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Abstract

Crowdsourcing has emerged as a popular ap-
proach for collecting annotated data to train
supervised machine learning models. However,
annotator bias can lead to defective annotations.
Though there are a few works investigating in-
dividual annotator bias, the group effects in
annotators are largely overlooked. In this work,
we reveal that annotators within the same de-
mographic group tend to show consistent group
bias in annotation tasks and thus we conduct an
initial study on annotator group bias. We first
empirically verify the existence of annotator
group bias in various real-world crowdsourcing
datasets. Then, we develop a novel probabilis-
tic graphical framework GroupAnno to cap-
ture annotator group bias with an extended Ex-
pectation Maximization (EM) algorithm. We
conduct experiments on both synthetic and real-
world datasets. Experimental results demon-
strate the effectiveness of our model in model-
ing annotator group bias in label aggregation
and model learning over competitive baselines.

1 Introduction

The performance of supervised machine learning
algorithms heavily relies on the quality of the anno-
tated training data. Due to the heavy workload of
annotation tasks, researchers and practitioners typi-
cally take advantage of crowdsourcing platforms to
obtain cost-effective annotation data (Snow et al.,
2008; Buhrmester et al., 2016). However, the labels
collected from multiple crowdsourcing annotators
could be not consistent, since the expertise and reli-
ability of the annotators are uncertain, and the task
itself could be subjective and difficult. In recent
years, a lot of efforts from the machine learning
community have been conducted to mitigate the
effect of these noisy crowdsourcing labels (Zheng
et al., 2017). Various approaches have been pro-
posed to model the quality (Liu et al., 2012; Aydin
et al., 2014), confidence (Joglekar et al., 2013),
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expertise (Ma et al., 2015; Zheng et al., 2016), re-
liability (Li et al., 2019) of annotators; or model
the difficulty of the tasks (Whitehill et al., 2009;
Ma et al., 2015). With such information, we can
infer the truth label from the noisy labels more ac-
curately and correspondingly train a more desirable
model.

In terms of annotator modeling, existing studies
mainly concentrated on factors like quality, confi-
dence, expertise, etc., which could affect the anno-
tation results. Besides, the bias held by the anno-
tators can also lead to defective annotations (Sap
et al., 2019), which is, however, rarely studied. In
addition, studies in social science (Eagly, 2013)
suggest that people from different demographic
groups tend to apply different standards to eval-
uate the same thing due to their different experi-
ences, which causes group bias. We observe that
annotators in different demographic groups tend
to show different bias in annotation tasks. For ex-
ample, in a preliminary study, we examine the in-
stances annotated by both two groups of annotators
in the Wikipedia Toxicity dataset (Wulczyn et al.,
2017). We observe that native speakers of English
rate 5.1% more comments as toxic than non-native
speakers. Similarly, annotators over 30 years old
rate 2.5% more comments as toxic than younger
annotators. More details of the preliminary study
can be found in Section 2. Thus, a thorough in-
vestigation of such annotator group bias is desired.
Similar to existing studies, by considering the ef-
fect of annotator group bias, we have the potential
to achieve a more accurate inference of true labels
and train a better model. Meanwhile, it is often
hard to estimate the individual bias of one annota-
tor with limited annotation data. With annotator
group bias as the prior knowledge, we can estimate
the bias more effectively based on the demographic
groups the annotator belongs to. Thus, annotator
group bias could mitigate the “cold-start” problem
in modeling the annotator individual bias.



In this paper, we aim to study how to detect anno-
tator group bias under text classification tasks, and
how to mitigate the detrimental effects of annotator
group bias on model training. We face several chal-
lenges. First, given noisy annotated data without
the true labels, how should we detect the annotator
bias? We first make a comparison of the annotation
results from different groups of annotators and find
that there is a significant gap between them. Then,
we use two metrics sensitivity and specificity to
measure the annotator bias, and conduct an analy-
sis of variance (ANOVA) which demonstrates that
the bias of each individual annotator shows obvious
group effects in terms of its demographic attributes.
Second, how can we estimate the annotator group
bias, and perform label aggregation and model
training with the knowledge of annotator group
bias? Following the traditional probabilistic ap-
proaches for label aggregation (Raykar et al., 2010;
Rodrigues and Pereira, 2018; Li et al., 2019), we
propose a novel framework GroupAnno that mod-
els the production of annotations as a stochastic
process via a novel probabilistic graphical model
(PGM). Inspired by the results of ANOVA, we as-
sume that the bias of an annotator can be viewed
as a superposition of the effects of annotator group
bias and its individual bias. We thereby extend the
original PGM for label aggregation with additional
variables representing annotator group bias. By
learning the PGM, we estimate the annotator group
bias, infer the true labels, and optimize our classifi-
cation model simultaneously. Third, how can we
learn this PGM effectively? With the unknown true
label as the latent variable, typical maximum likeli-
hood estimation (MLE) method cannot be directly
applied to estimate the parameters. To address this
challenge, we propose an extended EM algorithm
for GroupAnno to effectively learn all the parame-
ters in it, including the parameters of the classifier
and the newly introduced variables for modeling
annotator group bias.

We summarize our contributions in this paper
as follows. First, we propose metrics to measure
the annotator group bias and verify its existence
in real NLP datasets via an empirical study. Sec-
ond, we propose a novel framework GroupAnno
to model the annotation process by considering the
annotator group bias. Third, we propose a novel
extended EM algorithm for GroupAnno where we
estimate the annotator group bias, infer the true
labels, and optimize the text classification model

simultaneously. Finally, we conduct experiments
on synthetic and real data. The experimental results
show that GroupAnno can accurately estimate the
annotator group bias. Also, compared with com-
petitive baselines, GroupAnno can infer the true
label more accurately, and learn better classifica-
tion models.

2 Understanding Annotator Group Bias

In this section, we perform an empirical study to
get a rudimentary understanding of annotator group
bias.

2.1 Data and Tasks

We investigate the group annotator bias on three
datasets that involve various text classification
tasks. These datasets are released in the Wikipedia
Detox project (Wulczyn et al., 2017): Personal
Attack Corpus, Aggression Corpus, and Toxicity
Corpus where each instance is labeled by multiple
annotators from the Crowdflower platform 1. For
all the datasets, the demographic attributes of the
annotators are collected. The data statistics of the
three Wikipedia Detox datasets, i.e. Personal At-
tack, Aggression, and Toxicity are shown in Table
1, where “#Instances” indicates the total number of
instances in a dataset; and “#Annotators” denotes
the total number of annotators.

Table 1: Statistics of the datasets.

Dataset #Instances #Annotators
Personal Attack 115,864 2,190

Aggression 115,864 2,190
Toxicity 159,686 3,591

The Personal Attack dataset and the Aggression
dataset contain the same comments collected from
English Wikipedia. Each comment is labeled by
around 10 annotators on two tasks, respectively.
The task of the former dataset is to determine
whether the comment contains any form of per-
sonal attack, while the task of the latter dataset is
to judge whether the comment is aggressive or not.
For each annotator, four demographic categories
are collected: gender, age, language, and educa-
tion. Although the original dataset provides more
fine-grained partitions, for simplicity, we divide
the annotators into only two groups in terms of

1https://www.crowdflower.com/
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each demographic category 2. We consider two
groups: male and female for gender, under 30 and
over 30 for age, below bachelor and above bache-
lor (including bachelor) for education, and native
and non-native speaker of English for language.
The toxicity dataset contains comments collected
from the same source. Similarly, each comment is
labeled by around 10 annotators on whether it is
toxic or not. The toxicity dataset includes the same
demographic information of the annotators as the
former two datasets.

2.2 Empirical Study

To investigate whether the annotators from different
groups behave differently in annotation tasks, we
first perform a comparison of the annotation results
from different annotator groups. For each demo-
graphic category, we collect the instances which are
labeled by annotators from both groups, and report
the proportion of instances that are classified as pos-
itive. The results are shown in Table 2. First, we
note that there are obvious gaps between the anno-
tations given by different annotator groups. Second,
given that the tasks of the three datasets are similar
(i.e., all of them are related to detecting inappro-
priate speech), the annotation tendency of each
annotator group is the same. For example, young
and non-native speaker annotators are less likely
to annotate a comment as attacking, aggressive, or
toxic. Third, in terms of different demographic cat-
egories, the gaps between the annotations from the
two groups are different. For example, compared
with other group pairs, the annotations provided by
native speakers and non-native speakers are more
different.

Analysis of Variance. The results in Table 2
suggest that annotators show group bias in the an-
notation tasks, which is manifested in that different
groups hold different evaluation criteria in the same
task. Specifically for classification tasks, different
annotators are unevenly likely to label instances
belonging from one class to another class. In this
paper, we only consider binary classification tasks
for simplicity 3. Thus, we use sensitivity (true pos-
itive rate) and specificity (1 − false positive rate)
(Yerushalmy, 1947) to describe the bias of an indi-
vidual annotator.

2Based on our experiments, when considering more fine-
grained groups, e.g. “18-30”, “30-45” and “45-60” for age,
the bias is also significant.

3All our findings and the proposed framework can be triv-
ially extended to the case of multi-way classification.

Next, we seek to verify the existence of anno-
tator group bias. We are interested in whether the
demographic category of an individual annotator
has a significant impact on its bias. Thus, we first
estimate the bias (i.e., sensitivity and specificity)
of each individual annotator from its annotation
data. Since we don’t have the true labels, we use
majority vote labels as the true labels to approxi-
mately estimate the bias of each annotator. Then,
we perform an ANOVA (Scheffe, 1999) with the
demographic category as the factors, the groups
as the treatments, and the bias of an annotator as
the response variable, to analyze the significance
of the annotator’s demographic groups against its
own bias. The corresponding statistical model can
be expressed as:

π̃r = u+ π1,g1r + · · ·+ πP,gPr + ϵr (1)

where π̃r indicates the bias of an individual annota-
tor r; u is the average bias of all annotators; πp,gpr

is the effect of the group gpr in terms of category
p; and ϵr is the random error which follows a nor-
mal distribution with the mean value as 0. To test
whether category p has a significant impact on π̃,
we consider the null hypothesis H0p : π

p,0 = πp,1,
which indicates that the demographic category p
has no significant effect on the annotator bias. In
other words, there is no significant difference be-
tween the annotation behaviors of the two groups
in terms of category p.

The results are shown in Table 3. In the table, we
report the inter-group sum of squares, which repre-
sent the deviation of the average group bias from
the overall average bias. We also use “∗” to denote
the significance of the hypothesis tests. We observe
that in categories of gender, age and language, the
two opposing groups show obvious different sensi-
tivity and specificity in most cases. Moreover, the
ANOVA suggests that we are confident to reject the
null hypotheses in these cases, which means that
the above three demographic categories can affect
the annotator bias significantly in different datasets.
Based on our observations, we conclude that the
demographic attribute of an annotator can have a
significant impact on its annotation behavior, and
thereby, annotator group bias does exist.

3 Modeling Annotator Group Bias

In this section, we discuss our approaches for anno-
tator group bias estimation, as well as bias-aware



Table 2: The positive rates of the annotations from different groups of annotators.

Dataset Gender Age Education Language

Male Female Under 30 Over 30 Below Ba. Above Ba. Native Non-native
PersonalAttack 15.98 18.67 15.83 18.52 17.63 15.81 19.95 14.40

Aggression 17.74 21.44 17.79 20.85 20.28 17.62 23.20 16.08
Toxicity 12.06 16.37 12.51 15.08 15.16 12.56 16.93 11.80

Table 3: The results of analysis of variance. The table shows the inter-group sum of squares (variance of treatments).
*, ** indicate that the group effects are significant at p < 0.05 and p < 0.005.

Category Personal Attack Aggression Toxicity

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
Gender 0.010 0.077* 0.106 0.182** 0.217** 0.266**

Age 3.093** 0.257** 3.529** 0.348** 3.230** 0.005
Education 0.006 0.001 0.021 0.012 0.012 0.013
Language 0.805** 0.155** 1.200** 0.470** 0.041 0.023*

label aggregation and model training. We first in-
troduce the metrics for measuring annotator group
bias, and then present the problem statement. Next,
we detail GroupAnno, the probabilistic graphical
model for modeling the production of annotations.
Finally, we describe our extended EM algorithm
for learning the proposed model.

3.1 Measurements
To measure the annotator bias in terms of demo-
graphic groups, we extend the definitions of sen-
sitivity and specificity to the group scenario. For-
mally, we define group sensitivity and group speci-
ficity of a group g in terms of category p as follows

αp,g = Pr(z = 1|y = 1, gpr = g)

βp,g = Pr(z = 0|y = 0, gpr = g)

where y is the true label and z is the annotated label.
gpr = g represents that the annotator r belongs to
group g in terms of demographic category p.

We use πp = (αp,0, αp,1, βp,0, βp,1) to denote
the bias parameters of demographic category p.
The bias parameters of all the P categories are
denoted as π = {πp}Pp=1.

3.2 Problem Statement
Suppose that we have a dataset D =
{xi, z1i , · · · , z

Ri
i }Ni=1 which contains N instances.

Each instance xi is annotated by Ri different anno-
tators, which results in labels z1i , · · · , z

Ri
i . We also

have an annotator set A = {(g1r , · · · , gPr )}Rr=1

that records the demographic groups of a total
of R annotators. Here, gpr ∈ {0, 1} indicates the
group that the r-th annotator belongs to in terms
of the p-th demographic category. We consider P

demographic categories for each annotator, and we
have two groups (i.e., 0 and 1) for each category.
Given D and A, we seek to (1) estimate the
annotator group bias π; (2) estimate the true label
yi of each instance xi; and (3) learn a classifier
Pw(y|x) which is parameterized by w.

Next, we introduce our GroupAnno to model the
annotation process, and propose an extended EM
algorithm to estimate the parameters Θ = {w, π}.

3.3 GroupAnno: The Probabilistic Graphical
Model

As shown in Figure 1, GroupAnno models the gen-
eration procedure of annotations as follows. Given
an instance x, its true label y is determined by an
underlying distribution Pw(·|x). The distribution
is expressed via a classifier with parameters w that
we will learn. Given the true label y, the annotated
label zr from an annotator r is determined by its
bias π̃r = (α̃r, β̃r). For simplicity, in the following
formulations, we use π̃r to represent α̃r or β̃r. In
Section 2.2, we show that the annotator bias can be
modeled by a superposition of the effects of anno-
tator group bias with a random variable reflecting
the annotator individual bias. Thus, following Eq
1, we assume that the annotator bias of annotator r
can be decomposed as

π̃r = u+ π1,g1r + · · ·+ πP,gPr + πr

To sum up, the parameters we introduced to
model annotator bias are π = {u} ∪ {πp}Pp=1 ∪
{πr}Rr=1. To estimate the parameters Θ = {w, π},
one way is to use maximum likelihood estimation.
Under the assumption that instances are sampled
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Figure 1: An illustration of GroupAnno. In the graph,
grey circles represent observed data; a white circle in-
dicates a latent variable; a diamond represents an in-
termediate variable; and squares denote the unknown
parameters that we will learn.

independently, the likelihood function of Θ can be
written as

P (D|Θ) =

N∏
i=1

P (z1i , · · · , z
Ri
i |xi; Θ)

Therefore, the MLE parameters can be found by
maximizing the log-likelihood

Θ̂MLE = {ŵ, π̂} = argmaxΘ lnP (D|Θ) (2)

3.4 The extended EM algorithm

However, we cannot directly apply MLE to solve
Eq 2, because there is an unknown latent variable
(i.e. the true label y) in the probabilistic graphical
model. Thus, we propose an extended EM algo-
rithm to effectively estimate the parameters Θ in
GroupAnno.

Since the true label yi is an unknown latent vari-
able, the log-likelihood term in Eq 2 can be decom-
posed as

lnP (D|Θ)

=

N∑
i=1

ln[Pw(yi = 1|xi)P (z1i , · · · , z
Ri
i |yi = 1; α̃)

+ Pw(yi = 0|xi)P (z1i , · · · , z
Ri
i |yi = 0; β̃)]

where α̃ = {α̃r}Rr=1 and β̃ = {β̃r}Rr=1 represent
the collections of the sensitivity and the specificity
of all the annotators. We further assume that the
annotations for one instance from different annota-
tors are conditionally independent given their de-
mographic attributes (Raykar et al., 2010). Then

we have

lnP (D|Θ)

=

N∑
i=1

ln
[
Pw(yi = 1|xi)×

Ri∏
r=1

P (zri |yi = 1; α̃)

+ Pw(yi = 0|xi)×
Ri∏
r=1

P (zri |yi = 0; β̃)
]

=
N∑
i=1

ln[piai + (1− pi)bi] (3)

where we denote

pi := Pw(yi = 1|xi)

ai :=

Ri∏
r=1

P (zri |yi = 1; α̃) =

Ri∏
r=1

α̃
zri
r (1− α̃r)

1−zri

bi :=

Ri∏
r=1

P (zri |yi = 0; β̃) =

Ri∏
r=1

(1− β̃r)
zri β̃

1−zri
r

Note that due to the existence of the latent vari-
able yi, Eq 3 contains the logarithm of the sum of
two terms, which makes it very difficult to calcu-
late its gradient w.r.t Θ. Thus, to solve the obstacle,
we instead optimize a lower bound of lnP (D|Θ)
via an EM algorithm.

E-step. Given the observation D and the current
parameters Θ, we calculate the following lower
bound of the real likelihood lnP (D|Θ)

lnP (D|Θ) ≥ Ey[lnP (D,y|Θ)]

=

N∑
i=1

µi ln piai + (1− µi) ln(1− pi)bi (4)

where µi = P (yi = 1|z1i , . . . , zRi , xi,Θ) and it
can be computed by the Bayes’ rule

µi =
aipi

aipi + bi(1− pi)
(5)

M-step. In the M-step, we update the model
parameters Θ by maximizing the conditional ex-
pectation in Eq 4

Θ← Θ+ α∇ΘEy[lnP (D,y|Θ)]

where α is the learning rate.
The training algorithm is summarized in Algo-

rithm 1. We first initialize the posterior probability
of the labels µi based on majority voting (line 1).
Next, we perform the extended EM algorithm to
update the model parameters iteratively. In the E-
step, we update µi by Bayes’ rule in Eq 5, and then



calculate the expectation by Eq 4 (from lines 3 to
5). Afterward, we perform the M-step, where the
gradients of the conditional expectation w.r.t the
model parameters are calculated, and the model pa-
rameters are updated through gradient ascent. The
iterative process is terminated when some specific
stop requirements are satisfied. In our implemen-
tation, we execute the EM optimization steps for a
fixed number of epochs.

Algorithm 1: The optimization algo-
rithm.

Input: Dataset D = {xi, z
1
i , · · · , zRi

i }
N
i=1,

annotator set A = {(g1r , · · · , gPr )}Rr=1.
Output: a text classification model w, estimated

annotator bias parameters π
1 Initialize µi =

1
Ri

∑Ri
r=1 z

r
i based on majority

voting.
2 repeat
3 E-step:
4 Update µi: µi ← aipi

aipi+bi(1−pi)

5 Calculate the expectation Ey[lnP (D,y|Θ)]
6 M-step:
7 Update the parameters Θ by maximizing the

above expectation.
8 Θ← Θ+ α∇ΘEy[lnP (D,y|Θ)]
9 until meets stop requirements;

4 Experiment

In this section, we evaluate the proposed method
via comprehensive experiments. We test our model
on both synthetic and real-world data. Through
the experiments, we try to answer three research
questions: (1) is our method able to accurately
estimate the annotator group bias? (2) can our
method effectively infer the true labels? and (3)
can our approach learn more accurate classifiers?

4.1 Baselines

We compare our proposed framework GroupAnno
with eight existing true label inference methods
(Zheng et al., 2017), including majority voting
(MV), ZenCrowd (Demartini et al., 2012), Mini-
max (Zhou et al., 2012), LFC-binary (Raykar et al.,
2010), CATD (Li et al., 2014a), PM-CRH (Aydin
et al., 2014), KOS (Karger et al., 2011), and VI-MF
(Liu et al., 2012).

4.2 Data

Synthetic Data. We first create two synthetic
datasets on a simple binary classification task with
2-dimension features. As shown in Figure 2, the
instances in the datasets are in the shape of circle

and moon, respectively. In each dataset, we sam-
ple 400 instances for both classes. We simulate 40
annotators with two demographic attributes. We
first randomly set the group bias for the two de-
mographic attributes. Then, based on our assumed
distribution that has been verified in Section 2, we
sample the bias for each annotator. Finally, we
suppose that each instance is labeled by 4 different
annotators and simulate the annotations based on
the sampled annotator bias. With the knowledge
of actual annotator group bias and true labels in
synthetic data, we can verify the capability of the
proposed framework in group bias estimation and
truth label inference.

Wikipedia Detox Data. We conduct experi-
ments on all the three subsets (i.e. Personal Attack,
Aggression, and Toxicity) of the public Wikipedia
Detox dataset. The details of this dataset are intro-
duced in Section 2.1. For the three subsets in the
Wikipedia Detox Corpus, we use the training/test
sets split by the publisher of the data (Wulczyn
et al., 2017). Since there is no available ground-
truth label in this dataset, we pick up a subset of
instances in the test set on which more than 80%
annotations reach an agreement and treat the MV
label as the ground-truth label. These instances are
less controversial, thus we are confident that the
MV labels are true labels. We report the perfor-
mance of the models trained under various label
inference approaches on this set.

Information Detection Data. This dataset
consists of text transcribed from conversations
recorded in several in-person and virtual meetings.
Each text is assigned an information label which
groups the text into three categories: give informa-
tion (G), ask information (A), and other (O). Five
different data annotators classified the text into one
of G, A, or O categories. We conducted a survey to
collect data on demographic characteristics of the
annotators such as gender, race, and native speaker
of English. We convert the three categories into
two classes by treating G and A as positive (i.e., in-
formation exchange) and O as negative (i.e., other).
There are 2,483 instances in total in this dataset.
After the annotation, we randomly select 762 in-
stances and ask the annotators to discuss and reach
an agreement on their labels. We treat these labels
as true labels. We construct the training set with
the remaining 1,721 instances without true labels,
plus 430 of the instances with true labels. Thus, we
have 20% training data with true labels, on which



we will report the truth inference performance. The
rest 332 instances with true labels make up our test
set.

4.3 Implementation Details
For text classification tasks on the Wikipedia Detox
data and the Information Detection data, we employ
an one-layer recurrent neural network (RNN) with
gated recurrent units (GRUs) as the classifier. In
the RNN classifier, the word embedding size is set
as 128 and the hidden size is set as 256. The classi-
fier is optimized by an Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.001. When
modeling annotator group bias, we consider 1-2
demographic categories with the most significant
group effects. For the Personal Attack dataset and
the Aggression dataset, we consider age and lan-
guage. For the Toxicity dataset, we consider gender.
For the Information Detection dataset, we consider
language.

4.4 Results on Synthetic Data
Group Bias Estimation. In each of the syn-
thetic datasets, we simulate the annotations based
on presented annotator group bias. We simulate
two demographic attributes for each annotator,
where there are two groups in terms of each at-
tribute. Thus, there are eight bias parameters to
estimate: sensitivities αp,g and specificities βp,g,
where p = 0, 1 and q = 0, 1. We compare the
real values of the annotator group bias and the esti-
mations from GroupAnno. The results are shown
in Table 4. We observe that the bias parameters
are estimated accurately within an acceptable error
range. The results demonstrate the ability of our
extended EM algorithm to estimate the parameters
in GroupAnno.

Truth Label Inference. The experimental re-
sults of truth label inference on synthetic data are
shown in Table 5. In the table, we list the perfor-
mance of different approaches on truth label infer-
ence. We make the following observations. First,
MV performs the worst among all the methods.
In fact, a majority vote often does not mean the
truth. By explicitly modeling the annotation behav-
iors of the annotators, an algorithm can infer the
true labels more accurately than the majority vote.
Second, the baselines Minimax and LFC-binary
outperform other baselines. LFC-binary leverages
PGM to model the individual annotator bias for
truth label inference, which achieves desirable per-
formance. Third, our framework GroupAnno fur-

Table 4: Results of group bias estimation on the syn-
thetic 2-dimensional datasets. “Real” and “Estimation”
indicate the real and the estimated values of the annota-
tor group bias parameters.

Params Real Estimation

Circle Moon
α0,0 0.700 0.739 0.728
α0,1 0.500 0.482 0.476
β0,0 0.800 0.787 0.778
β0,1 0.300 0.335 0.320
α1,0 0.900 0.927 0.943
α1,1 0.400 0.419 0.428
β1,0 0.300 0.288 0.295
β1,1 0.500 0.458 0.443
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Figure 2: Two synthetic datasets with simulated 2-
dimensional data.

ther improves the accuracy of truth label inference
on the basis of LFC-binary, since GroupAnno finds
and exploits the group annotator bias as additional
information. GroupAnno models the group annota-
tor bias as prior information of the individual bias
of each annotator so that individual bias can be es-
timated more accurately. As a result, GroupAnno
achieves the best performance on truth label infer-
ence.

4.5 Results on Wikipedia Detox Dataset

The experimental results on the Wikipedia Detox
datasets are shown in the left section of Table 6.
For LFC-binary and GroupAnno, where truth la-
bel inference and model training are conducted
simultaneously, we directly report the performance
of the resulting model on the test set. For other
pure truth label inference approaches, we first infer
the truth labels and then train the model on the in-
ferred labels. Finally, we report the performances
of these models on the test set. The results show
that GroupAnno achieves better performances than
the state-of-the-art methods, which demonstrates
the effectiveness and superiority of our framework
in practice.



Table 5: Experimental results on the synthetic 2-
dimensional datasets. “Acc” and “F1” indicate the ac-
curacy and the F1 score of true label inference. In the
table, we report the results averaged over 5 runs from
different random seeds.

Methods Circle Moon

Acc F1 Acc F1
MV 0.728 0.722 0.748 0.744

ZenCrowd 0.894 0.886 0.904 0.898
Minimax 0.911 0.909 0.916 0.914

LFC-binary 0.911 0.909 0.916 0.914
CATD 0.851 0.844 0.861 0.853

PM-CRH 0.860 0.851 0.875 0.868
KOS 0.891 0.884 0.897 0.891

VI-MF 0.907 0.905 0.914 0.911
GroupAnno 0.921 0.916 0.925 0.920

4.6 Results on Information Detection Dataset
The experimental results on the information detec-
tion dataset are shown in the right section of Table
6. Since we have 20% training data with available
true labels, we first examine the accuracy of truth
label inference of various methods on this part of
the data, and then report the performance of the
trained classifiers on the test data. We find that our
proposed method still outperforms all the baselines
on both truth inference and resulting classifier per-
formance, which further verifies the superiority of
GroupAnno in real-world data.

5 Related Work

Bias and fairness issues are crucial as machine
learning systems are being increasingly used in
sensitive applications (Chouldechova and Roth,
2018). Bias is caused due to pre-existing soci-
etal norms (Friedman and Nissenbaum, 1996), data
source, data labeling, training algorithms, and post-
processing models. Data source bias emerges when
the source distribution differs from the target distri-
bution where the model will be applied (Shah et al.,
2019). Training algorithms can also introduce bias.
For example, if we train a model on data that con-
tain labels from two populations - a majority and a
minority population - minimizing overall error will
fit only the majority population ignoring the minor-
ity (Chouldechova and Roth, 2018). Data labeling
bias exists when the distribution of the dependent
variable in the data source diverges from the ideal
distribution (Shah et al., 2019). Many of these data
labels are generated by human annotators, who can
easily skew the distribution of training data (Dixon
et al., 2018). Various factors such as task difficulty,

task ambiguity, amount of contextual information
made available, and the expertise of the annotator
determine annotation results (Joseph et al., 2017).

Prior literature studies various approaches to en-
sure the reliability of data annotations. Demar-
tini et al. (2012); Aydin et al. (2014) use worker
probability to model the ability of an annotator
to correctly answer a task, and some other works
(Whitehill et al., 2009; Li et al., 2014b) introduce
a similar concept, worker quality, by changing
the value range from [0, 1] to (−∞,+∞). Welin-
der et al. (2010) model the bias and variance of
the crowdsourcing workers on numeric annotation
tasks. Moreover, Fan et al. (2015) and Ma et al.
(2015) find that annotators show different qualities
when answering different tasks, and thereby pro-
pose to model the diverse skills of annotators on
various tasks. Li et al. (2019) realize that annotators
perform unevenly on each annotation instance, so
they propose a novel method to model the instance-
level annotator reliability for NLP labeling tasks.
Geva et al. (2019) use language generated by anno-
tators to identify annotator identity and showed that
annotator identity information improves model per-
formance. All these studies have been individual-
focused and ignore group effects. Our approach
differs in that we study systemic bias associated
with annotators of a specific demographic group.

6 Conclusion

In this work, we investigate the annotator group
bias in crowdsourcing. We first conduct an empiri-
cal study on real-world crowdsourcing datasets and
show that annotators from the same demographic
groups tend to show similar bias in the annotation
tasks. We develop a novel framework GroupAnno
that considers the group effect of annotator bias,
to model the whole annotation process. To solve
the optimization problem of the proposed frame-
work, we propose a novel extended EM algorithm.
Finally, we empirically verify our approach on two
synthetic datasets and four real-world datasets. The
experimental results show that our model can ac-
curately estimate the annotator group bias, achieve
more accurate truth inference, and also train bet-
ter classifiers that outperform those learned under
state-of-the-art true label inference baselines. As
future work, we plan to investigate the annotator
group bias in tasks beyond classification such as
regression tasks and text generation tasks.



Table 6: Expermental results on the Wikipedia Detox datasets and the Information Detection dataset. For Wikipedia
Detox, we report the performances of the learned classifiers on the test data. For Information Detection, we report
the performance on truth inference (“Truth Infer”) as well as the performance of the learned classifiers on the test
data (“Prediction”). We report the results averaged over 5 runs from different random seeds. For the results of
Wikipedia Detox, we also show the 95% confidence intervals.

Dataset Wikipedia Detox Information Detection

Method Aggression Personal Attack Toxicity Truth Infer Prediction
F1 F1 F1 Acc F1 Acc F1

MV 0.953± 0.006 0.955± 0.005 0.951± 0.006 0.786 0.862 0.843 0.899
ZenCrowd 0.954± 0.005 0.952± 0.005 0.953± 0.006 0.786 0.862 0.845 0.900
Minimax 0.957± 0.005 0.959± 0.004 0.956± 0.005 0.823 0.872 0.855 0.898

LFC-binary 0.957± 0.006 0.960± 0.006 0.957± 0.003 0.814 0.872 0.864 0.907
CATD 0.935± 0.008 0.949± 0.005 0.954± 0.004 0.809 0.873 0.849 0.901

PM-CRH 0.949± 0.003 0.954± 0.006 0.955± 0.004 0.809 0.873 0.849 0.901
KOS 0.949± 0.006 0.952± 0.003 0.948± 0.006 0.786 0.862 0.844 0.899

VI-MF 0.955± 0.005 0.957± 0.004 0.951± 0.005 0.823 0.872 0.855 0.898
GroupAnno 0.961± 0.004 0.968± 0.005 0.962± 0.005 0.825 0.883 0.869 0.910
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