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Abstract

Crowdsourcing has proven to be a cost-e↵ective way to meet

the demands for massive labeled training data in supervised

deep learning models. However, the obtained crowdsourced

labels are often inconsistent and noisy due to cognitive

and expertise di↵erences among crowd workers. Existing

approaches either infer latent true labels from noisy crowd-

sourced labels or learn a discriminative model directly from

the crowdsourced labeled data, assuming the latent true

label distribution is class-balanced. Unfortunately, in many

real-world applications, the true label distribution typically

is imbalanced across classes involved in the collected data.

Therefore, in this paper, we address the problem of learning

from crowdsourced labeled data with an imbalanced true

label distribution. We propose a new framework, named

“Learning from Imbalanced Crowdsourced Labeled Data”

(ICED), which simultaneously infers true labels from

imbalanced crowdsourced labeled data and achieves high

accuracy on downstream tasks such as classification. The

ICED framework consists of two modules— a true label

inference module and a synthetic data generation module—

that augment each other iteratively. Extensive experiments

conducted on both synthetic and real-world datasets

demonstrate the e↵ectiveness of the ICED framework. We

will release datasets and code used for evaluation based on

the acceptance of this paper.
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1 Introduction

The success of supervised deep learning models in
many real-world applications, such as image classifica-
tion [17, 27, 28, 14] and speech recognition [8, 1, 12], is
inseparable from the availability of large-scale labeled
training data. However, obtaining a large amount of
labeled data is often challenging. Annotating certain
types of data samples such as medical images require
specific domain knowledge [30], while some other types
of data such as videos or audios are expensive in terms
of time [33]. By inviting multiple crowd workers to an-
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notate labels for data samples simultaneously or sequen-
tially, modern crowdsourcing platforms, such as Ama-
zon Mechanical Turk1, o↵er a cost-e↵ective way to col-
lect large-scale labeled data [25]. Although crowdsourc-
ing alleviates the label shortage problem to some extent,
the annotated labels can be very inconsistent and noisy
due to the cognitive di↵erences between crowd work-
ers [7]. For example, non-experts and experts may an-
notate the same object with distinct labels. As most
existing supervised deep learning models only work well
with determinate noise-free labels, there is a need for al-
ternative approaches to handle such noisy labeled data.

In the past few decades, several methods have ad-
dressed noisy crowdsourced labels. One class of meth-
ods infer determinate true labels from crowdsourced la-
bels [6, 24, 32]. Another class of methods learn a dis-
criminative model directly from crowdsourced labeled
data [25, 16, 29]. All the above approaches assume that
the given training set is class-balanced, which is not
true in real-world applications [31, 22], where majority
classes have a significantly higher number of data sam-
ples than minority classes. Hence, those approaches
perform poorly when training on imbalanced datasets.

There have been many attempts to address the
challenges brought by imbalanced datasets, such as re-
sampling approaches [21, 4, 10] and re-weighting ap-
proaches [5, 3]. However, these approaches require de-
terminate noise-free training labels. Hence, they fail
in crowdsourcing applications and there is a need for
a new approach to address both imbalanced and noisy
data. Based on that, in this paper, we study the prob-
lem of learning from imbalanced crowdsourced labeled
data. To the best of our knowledge, this is the first
work to learn an e↵ective discriminative model on noisy
labels when the latent true label distribution is imbal-
anced. Our goals are 1) to obtain accurate supervised
information by inferring true labels from crowdsourced
labels; 2) to ensure good prediction performance of the
classifier on all classes in the balanced test set.

To meet these two goals, inspired by existing im-
balanced data handling approaches and crowdsourced
label processing approaches, we propose a novel frame-
work ICED (Learning from Imbalanced Crowdsourced

1https://www.mturk.com
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labEled Data). The ICED framework consists of two
modules. One module uses generated synthetic data for
minority classes to improve the true label inference pro-
cess. Another module uses the inferred true labels to
improve the quality of generated synthetic data. These
two modules augment each other and improve them-
selves iteratively. After training, ICED is able to learn a
classifier with good prediction performance on all classes
uniformly distributed in the test set. The main contri-
butions of this work are summarized below:

• We are the first one to address the problem of learn-
ing from imbalanced crowdsourced labeled data, a
more realistic scenario in real-world.

• We present a novel framework ICED, which can
simultaneously infer true labels from imbalanced
crowdsourced labeled data and achieve good pre-
diction performance on all classes.

• We conduct extensive experiments on both syn-
thetic and real datasets to demonstrate the e↵ec-
tiveness of ICED on the classification task.

The rest of this paper is organized as follows. Sec. 2
presents our ICED framework in detail. Extensive em-
pirical studies are introduced in Sec. 3. We summarize
related works in Sec. 4 and conclude our work in Sec. 5.

2 The Proposed Framework

In this section, we first formulate the problem we stud-
ied and then introduce our proposed ICED framework.

2.1 Problem Formulation Suppose for a set of
data samples X = {x1,x2, . . . ,xn}, W workers are in-
vited to annotate every sample in X and, hence, pro-
duce a set of crowdsourced labels Y = {y1,y2, . . . ,yn},
where yi = {(yi,1, wi,1), (yi,2, wi,2) . . . , (yi,W , wi,W )}.
Here each annotation pair (yi,u, wi,u) represents label
yi,u provided by worker wu for sample xi from C classes.

Definition 1 (Learning from Imbalanced Crowd-
sourced Labeled Data). Given a sample setX and its
corresponding crowdsourced label set Y, our goal is to
obtain a classifier F , which can achieve good prediction
performance on uniformly distributed test data.

For each data sample xi 2 X, we assume it has
W annotated labels. Moreover, as the true labels for
sample set X is unknown, we denote the estimated
true labels inferred by our ICED framework for X as
T = {t1, t2, . . . , tn}. In this paper, we focus on the
binary classification task, i.e., there are two classes in
the sample set X and, one is the majority class and
the other is the minority class. Note that, our ICED

Figure 1: An overview of the ICED framework. The
solid yellow and red arrows indicate outputs of the
synthetic data generation module and the true label
inference module, respectively, in the current training
iteration. The red and black dash arrows represent the
inferred labels and synthetic data samples, respectively,
in the previous iteration.

framework is also adaptable for multi-class classification
tasks with slight modifications and we will leave it as one
future work.

2.2 Framework Overview For tackling the learn-
ing from imbalanced crowdsourced labeled data prob-
lem, we propose a novel framework ICED as shown in
Figure 1. The main structure of ICED is a deep neu-
ral network based classifier F consisting of a feature
extractor G and a fully connected layer (FC). During
training F , ICED introduces two modules: true label
inference module and synthetic data generation mod-
ule. The former estimates determinate true labels from
given crowdsourced labeled data, and the latter gener-
ates synthetic data samples for the minority class using
the estimated true labels. These two modules augment
each other and improve themselves iteratively. Further-
more, to make the ICED framework obtain better initial
learning ability at the beginning of the model training
phase, ICED also includes a warm-up training strategy
specifically designed for the crowdsourced labeled data.
Next, we introduce details of each component.

2.3 True Label Inference Many classical ap-
proaches for inferring true labels from crowdsourced la-
bels ignore the correlation between data samples and
cognitive di↵erences between individual crowd workers.
For example, some workers tend to judge class c↵ as
class c� by mistake due to their cognitive di↵erences.
Therefore, for overcoming the aforementioned short-
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ages, our ICED framework adopts an EM approach [6]
into the true label inference module to estimate determi-
nate true labels from given crowdsourced labeled data.

To capture the annotation behaviors of crowd work-
ers, we define  wu(c↵, c�) as the probability that worker
wu will annotate data samples with true label c↵ as
class c� . Therefore,

P
c� 6=c↵

 wu(c↵, c�) represents the
annotation error rate of the worker wu when true label
of samples are c↵. Let T be the random variable rep-
resenting the true label of dataset X (similarly Ti for
sample xi) and �c↵ = p(T = c↵) = p(Ti = c↵) be the
prior of class c↵, in the absence of any observations.

Our task is to estimate the probability of each label
c↵ 2 [C] to be the latent true label for each sample xi

based on the crowdsourced labels Y, i.e., p(Ti = c↵|Y).
The label with maximal probability is then chosen as
the estimated label to train the classifier F . The steps
in the EM algorithm to estimate true labels are:

• E-step: computes the likelihood function of the
observed crowdsourced labels Y based on current
estimated true labels T and parameters  =
{ wu(c↵, c�)|wu 2 [W ], c↵, c� 2 [C]} and � =
{�c↵ |c↵ 2 [C]};

• M-step: updates the parameters by maximizing the
likelihood function and refine the estimated true
labels with new parameters.

In detail, we assume annotations provided by crowd
workers are independently distributed. Given the cur-
rent estimated true labels T and parameters  and �,
the likelihood of the observed crowdsourced labels Y
can be obtained by

Q(Y| ,�,T)/
Y

i2[n]

p(Ti= ti)
Y

u2[W ]

 wu(ti, yi,u),(2.1)

where i, u are the indices of data sample and crowd
worker, respectively; [n] and [W ] denote the sets
{1, 2, . . . , n} and {1, 2, . . . ,W}, respectively.

The parameters in  and � are updated by max-
imizing the above likelihood function. Specifically,  
can be computed as

 wu(c↵,c�) =
d(wu, c↵, c�)

d(wu, c↵)
,

where d(wu, c↵, c�) represents the number of data sam-
ples labeled as c� by worker wu when their current es-
timated true labels is c↵, and d(wu, c↵) represents the
number of data samples labeled by worker wu when their
current estimated true labels is c↵. In addition, � can
be computed as

�c↵ =
# samples whose true label is estimated as c↵

# samples in sample set X
.

Based on these updates, we can refine the estimation of
true label by Bayes’s theorem

p(Ti=c↵|Y, ,�) / p(Y| ,�,Ti=c↵)p(Ti=c↵)

/ p(Ti=c↵)
Y

u2[W ]

 wu(c↵, yi,u),(2.2)

and choose the label c↵ with largest probability as the
current estimated true label for data sample xi. We
repeat E-step and M-step iteratively until convergence.

In summary, the true label inference module can
provide two important information for our ICED frame-
work: 1) an estimation of latent true labels, T, which
can be used as supervised labels to train the classifier
F and 2) the marginal distribution p(T = c↵), which
models the data imbalance between classes and thereby
guiding the synthetic data generation module to aug-
ment a balanced synthetic dataset. Moreover, we also
obtain the annotation error rate of each worker wu, de-
rived from  wu(·, ·) as a by-product from the EM al-
gorithm. The annotation error can be potentially used
to penalize the unqualified workers whose error rate is
relatively high, depending on application scenarios.

2.4 Synthetic Data Generation The performance
of the EM approach adopted in the true label inference
module depends on the choice of prior probability, e.g.,
�c↵ , for initialization. Conventionally, uniform prior is
used for initialization, resulting in poor performance on
imbalanced crowdsourced labeled training sets. Moti-
vated by over-sampling approaches as an e↵ective solu-
tion to handle imbalanced datasets, we integrate a syn-
thetic data generation module in our ICED framework
to balance the training set.

As shown in Figure 1, we first apply the true label
inference module to obtain estimated true labels T. We
then use the feature extractor G in the deep neural
network based classifier F to map all data samples in
X from the raw data space into a latent embedding
space. Finally, we apply the following synthetic data
generation process in the embedding space.

Suppose zi be the embedding of the data sample xi

in the learned latent space. Based on the information
involved in the estimated true labels T, all embeddings
zi belong to the minority class (determined by its cor-
responding estimated true label ti) will be selected as
candidate embeddings to help generate synthetic minor-
ity samples. After that, we use the linear interpolation
operations adopted in the SMOTE [4] approach as a
way to create synthetic minority sample embeddings.
Specifically, for any candidate embedding zi, we (i) dis-
cover k nearest neighbors {z1i , z2i , . . . , zki } for zi; and (ii)
randomly pick up one nearest neighbor zri from the set
{z1i , z2i , . . . , zki } to create a synthetic minority sample
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embedding z0i as follows:

(2.3) z0i = zi + � (zri � zi) ,

where � is a scalar in range [0, 1]. The step (ii) can
repeat R times, and, finally, R ⇥m synthetic minority
sample embeddings will be generated when executing
the same process on all selected candidate embeddings
with size m.

Since the true label inference module cannot guar-
antee 100% accuracy on estimating latent true labels
from crowdsourced labels, the estimated determinate la-
bels still have a chance to be opposite to the latent true
labels. Hence, to reduce the adverse e↵ects of possible
wrong inference, di↵erent from the SMOTE approach,
which chooses � randomly, we assign the value for �
based on the label certainty score of a data sample xi

and its selected neighbor xr
i .

Definition 2 (Label Certainty Score). Given a data
sample xi and we assume that its crowdsourced label
{yi,u | u 2 [W ]} follow the multinomial distribution.
The label certainty score S(xi) is defined as the inverse
variance of this distribution and is computed as

(2.4) S(xi) =
1

Eukyi � Eu(yi)k2 + ✏
,

where Eu is the expectation over crowdsourced label
{yi,u | u 2 [W ]} for sample xi, and ✏ is a small constant
to avoid numerical issue.

The label certainty score measures the agreement
degree among crowd workers. Specifically, the label
certainty score reaches its minimum value when a tie or
a draw happens and goes to its maximum value when
all annotated labels for one data sample are consistent.

Therefore, given sample xi and its neighbor xr
i , the

value for � can be calculated by

(2.5) � = S(xi)/
�
S(xi) + S(xr

i )
�
+ ⌘,

where ⌘ is sampled from a uniform distribution to
add some randomness on the scalar �. With the help
of Eq. (2.5), the generated synthetic embeddings z0i
will be close to the candidate embedding, which has
a higher label certainty score, such that we increase
the probability of the generated embedding z0i of being
in the cluster of minority embeddings, and thereby
alleviating imbalance issues.

After generating the synthetic minority sample em-
beddings, we apply the k-NN approach into the latent
embedding space to construct synthetic crowdsourced
labels for generated sample embeddings. More specifi-
cally, for any generated minority embedding z0i, we col-
lect crowdsourced labels of its k nearest neighbor em-
beddings of real data samples. We then determine its

synthetic crowdsourced labels by simulating the anno-
tation behavior of each crowd worker in these collected
k crowdsourced labels.

We obtain synthetic minority sample embeddings
and corresponding synthetic crowdsourced labels, as
shown in Figure 1. We then map the synthetic embed-
dings back to the raw data space using a pre-trained
decoder Q and update the parameters of the classifier
F using the augmented balanced training.

In summary, the synthetic data generation mod-
ule in our ICED framework addresses the issues caused
by the imbalanced training set by generating su�cient
synthetic minority data samples and synthetic crowd-
sourced labels, benefitting both the true label inference
process and the classifier training process.

2.5 Warm-up Training Strategy Recent studies
have discovered that deep neural networks can learn
even on noisy labeled data [23, 19]. Hence, a warm-up
training phase is an e↵ective strategy to initialize super-
vised deep learning models. Existing literature [18, 11]
uses all available data in the warm-up training phase.
Di↵erent from existing literature, in our ICED frame-
work, we design a new warm-up training strategy for
the crowdsourced labeled data.

Specifically, given sample set X and crowdsourced
label set Y, we first calculate the label certainty score
for each data sample xi. After gathering label certainty
scores for all data samples, we apply majority voting
(MV) on the crowdsourced label set Y to obtain an esti-
mated true label set T. Each element ti in T is obtained
by aggregating its corresponding crowdsourced label Yi

using MV. We then divide the sample set X and cor-
responding true label set T into four di↵erent groups
based on the label certainty scores: low certainty group,
third-highest certainty group, second-highest certainty
group, and highest certainty group. We use all data
samples except those in the low certainty group to ini-
tially train the classifier F with associated determinate
labels in a supervised way. The algorithm of our de-
signed warm-up training strategy (Algorithm 2) can be
found in Appendix A.

In general, there is a higher probability of the
determinate label ti, obtained by MV, being the same
as the latent true label when the sample xi has a higher
label certainty score S(xi). Our designed warm-up
training strategy is similar to using noisy labeled data
to help provide some initial abilities for the deep neural
network based classifier F and using clean labeled data
to fine-tune F . After the warm-up training phase, our
ICED framework is able to get a better initial learning
abilities.
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2.6 Algorithm In this subsection, we present the
ICED framework in Algorithm 1.

Algorithm 1 The algorithm of ICED

Input: sample set X, crowdsourced label set Y
1: Conduct warm-up training. // Algorithm 2
2: repeat
3: Generate synthetic minority samples and corre-

sponding crowdsourced labels. // Sec. 2.4
4: Obtain the inferred true label set T0 for the

augmented crowdsourced labels. // Sec. 2.3
5: Train the classifier F using the augmented data

samples and inferred determinate labels T0.
6: until model converge or maximum epoch reached

As shown in Algorithm 1, we first introduce our
designed warm-up training strategy to make the deep
neural network based classifier F obtain better initial
abilities. Then, in each training epoch, we apply the
synthetic data generation module, to produce synthetic
minority samples with synthetic crowdsourced labels,
for balancing the training set. After that, the true label
inference module infers latent true labels for the aug-
mented crowdsourced labels. Hence, the parameters of
the classifier F can be updated based on the augmented
balanced data samples and corresponding inferred de-
terminate labels in a supervised way. We continuously
conduct this iteration process until F converges or the
maximum training epoch reaches.

3 Experiment

In this section, we conduct experiments to verify the
e↵ectiveness of our proposed ICED framework by an-
swering the following three questions:

1. Can the proposed framework obtain good predic-
tion performance on the balanced test data?

2. Does the generated synthetic data improve the
accuracy of the true label inference process?

3. Does our newly designed warm-up training strategy
improve over existing warm-up training strategies?

To answer the first question, we compare the per-
formance of ICED with several state-of-the-art crowd-
sourced label processing approaches on the classification
task. For the second question, we compare the accuracy
of true label inference with and without synthetic data
generation modules on two synthetic datasets. Finally,
we compare the prediction performance of the deep neu-
ral network based classifier F using our designed warm-
up training strategy and by traditional warm-up train-
ing strategies to answer the third question.

Table 1: Statistics of datasets. The entries in “# major-
ity class” and “# minority class” represent the number
of samples we used for those classes, respectively, to
construct a synthetic training dataset.

Statistic item
Dataset

Gisette-Syn USPS-Syn GSAD-Syn Emotion

# features 5,000 256 128 1,582
# training data 3,080 734 2,575 3,027
# majority class 2,800 668 2,341 -
# minority class 280 66 234 -
# crowd worker 7 9 11 5
# test data 1,400 332 1,170 900

3.1 Datasets

3.1.1 Synthetic Datasets We conduct experiments
on three synthetic datasets and one real-world dataset.
Table 1 summarizes key statistical information of these
four datasets. The three synthetic imbalanced crowd-
sourced labeled datasets are constructed based on three
widely used datasets: Gisette, USPS, and Gas Sensor
Array Drift (GSAD). Specifically, Gisette and USPS
datasets are from Feature Selection data repository2 and
the GSAD dataset is from UCI data repository3. Due
to the limited space, we provide the details of construct-
ing synthetic imbalanced crowdsourced labeled datasets
used in our experiments in Appendix B.

3.1.2 Real Dataset We collected a real-world im-
balanced crowdsourced labeled dataset Emotion from
our educational practice. The collected data samples in
the Emotion dataset are 1-minute audio tracks collected
from multiple teachers who teach courses such as Math-
ematics and English in primary school. We split all au-
dio tracks in Emotion into a training set and a test set
with sample size 3,027 and 900 separately. Five teaching
professionals are invited to annotate every audio track
in the training set as either high emotion arousal or
low emotion arousal to assess teaching e↵ects on courses
and the annotation results provided by one teaching ex-
pert for audio tracks in the test set are adopted as the
ground truth labels. For experiment purpose, we main-
tained the same number of data samples in each class in
the test set. More details about this real-world crowd-
sourced labeled dataset can be found in Appendix C.

3.2 Performance Comparison

3.2.1 Baseline Methods For evaluating the e↵ec-
tiveness of our proposed ICED framework on the learn-
ing from imbalanced crowdsourced labeled data prob-

2http://featureselection.asu.edu/datasets.php
3https://archive.ics.uci.edu/ml/index.php
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Table 2: Classification performance of our ICED framework and baseline methods on four datasets.
Gisette-Syn USPS-Syn GSAD-Syn Emotion

Methods Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score
MV+LR 0.8179 0.8175 0.8494 0.8480 0.7094 0.6872 0.8289 0.8277
MV+DNN 0.8000 0.7979 0.8735 0.8732 0.8333 0.8327 0.7944 0.7901
D&S+LR 0.7671 0.7592 0.8193 0.8136 0.6974 0.6716 0.8311 0.8294
D&S+DNN 0.7636 0.7562 0.7530 0.7386 0.8085 0.8082 0.7811 0.7749
Crowd-Layer 0.8200 0.8167 0.9006 0.8998 0.8342 0.8295 0.8300 0.8273

MBEM 0.6967 0.4211 0.7813 0.5334 0.6826 0.5577 0.6344 0.5324
CPC 0.8021 0.8020 0.8313 0.8311 0.6154 0.5917 - -
ICED 0.8521 0.8512 0.9036 0.9030 0.8872 0.8865 0.8644 0.8640

lem, we compare the performance of ICED with several
representative state-of-the-art crowdsourced label pro-
cessing approaches on the classification task, including:

• Majority Voting (MV), which infers determinate
labels based on the majority of annotated labels.

• D&S [6], which infers determinate labels via esti-
mating the error rate of each crowd worker.

• Crowd-Layer [25], which is an end-to-end deep
neural network containing a novel crowd layer to
learn from crowdsourced labeled data directly.

• MBEM [16], which is able to learn from crowd-
sourced labeled data via jointly modeling latent
true labels and crowd worker qualifications.

• CPC [15], which improves the performance of clas-
sifier via learning parameters of classifier and clus-
ters of crowd workers jointly.

As MV and D&S can only infer determinate labels
instead of learning a classifier from crowdsourced labels,
we introduce two classifiers Logistic regression (LR) and
deep neural networks (DNN). Specifically, we train LR
and DNN on the same datasets with determinate labels
inferred by MV and D&S individually and use them as
baseline methods. We denote these baseline methods
as MV+LR, MV+DNN, D&S+LR and D&S+DNN.
The implementation details of aforementioned baseline
methods as well as our proposed ICED framework are
introduced in Appendix D.

Table 2 shows the classification performance of our
ICED framework by comparing against seven base-
line methods on three synthetic datasets and one real
dataset. Based on this table, we have the following
observations. Firstly, the classification performance of
both LR and DNN, measured in terms of accuracy and
F1-score, is higher when using MV instead of D&S to in-
fer determinate labels. D&S, as an EM-based approach,
assumes a uniform label distribution. MV indepen-
dently aggregates annotated labels of each crowdsourced
label. Hence, given an imbalanced crowdsourced labeled

dataset, the performance of MV on the true label infer-
ence task will not be a↵ected by the imbalanced true la-
bel distribution. On the contrary, D&S may show poor
performance due to its inaccurate uniformity assump-
tion. Secondly, our ICED framework achieves the best
classification performance on all four datasets compar-
ing with several representative state-of-the-art crowd-
sourced label processing approaches. We believe there
are three reasons behind this performance. First, even
though the D&S approach assumes uniformity in data
distribution, ICED generates synthetic data to augment
the imbalances between classes in the training set. The
resulting training set will approximate a uniform dis-
tribution, enhancing the performance of the D&S ap-
proach. Second, the more accurate determinate labels
inferred by the true label inference module improves the
synthetic data generation module. The reason being,
the synthetic data generation module can use the in-
ferred determinate labels to di↵erentiate minority data
samples from majority ones to generate synthetic sam-
ples in minority classes. As a result, the data samples
produced by the synthetic data generation module have
a higher probability of belonging to the minority class.
Third, the synthetic generated data can also help the
classifier F in ICED to obtain better generalization abil-
ity during the model training phase via augmenting the
imbalanced training set.

3.3 Ablation Study As we mentioned before, the
D&S approach assumes uniform label distribution as
prior knowledge for initialization. Therefore, the true
label inference performance of the D&S approach is
lower than the MV approach on the imbalanced crowd-
sourced labeled dataset. The ICED framework ad-
dresses the issue in the D&S approach by integrating
a synthetic data generation module. The synthetic
data generation module balances the imbalanced train-
ing set via generating synthetic data samples for minor-
ity classes. The resulting augmented dataset better fit
the prior knowledge used in D&S.

To verify whether and how the synthetic generation
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(a) Gisette-Syn. (b) GSAD-Syn.

Figure 2: Accuracy of true label inference using MV
and the true label inference module (D&S) in ICED.

module benefits from the true label inference module
in our ICED framework, we compare the true label in-
ference accuracy of D&S adopted in ICED with MV.
We show the comparison on two synthetic datasets—
Gisette-Syn and GSAD-Syn— because the ground truth
labels are available for these two datasets. In our ex-
periments, we record the true label inference accuracy of
D&S for three cases: 1) before introducing the synthetic
data generation module, 2) after applying the synthetic
data generation module once, and 3) after completing
the training procedure of ICED. We denote these three
cases as D&S-orig, D&S-first, D&S-final, respectively.
In Figure 2, we find that the performance of D&S varies
widely for di↵erent cases. Take the experimental re-
sults obtained on the training set of Gisette-Syn as an
example. As shown in Figure 2(a), before introducing
the synthetic data generation module, the true label in-
ference accuracy of D&S is below 60%, which is much
worse than MV. Surprisingly, by conducting the syn-
thetic data generation process just once, the label infer-
ence accuracy of D&S is higher than 80%. After finish-
ing the training procedure of ICED, i.e, after repeating
the synthetic data generation process multiple times,
D&S achieves higher than 90% true label inference ac-
curacy, which is a significant improvement in compar-
ison to a naive application of D&S on the imbalanced
crowdsourced labeled dataset. In conclusion, the syn-
thetic generation module significantly enhances the per-
formance of the true label inference module in ICED.

3.4 E↵ectiveness of Warm-up Training In this
subsection, we test the e↵ectiveness of our designed
warm-up training strategy. Given a set of crowdsourced
labeled data, the warm-up training strategy adopted
in our ICED framework first calculates label certainty
score for each data sample based on its corresponding
crowdsourced label. Then it divides data samples
into di↵erent groups based on their label certainty
scores. Data samples in the third-highest certainty
group will feed the classifier F in ICED first with
their corresponding determinate labels produced by

Table 3: Performance of di↵erent warm-up strategies.
Datasets Methods # samples # epoch Accuracy F1-score

Trad-I 3,080 15 0.8014 0.7989
Gisette-Syn Trad-II 2,043 15 0.6079 0.5372

ICED-w 2,043 5⇥ 3 0.8186 0.8126
Trad-I 734 6 0.7500 0.7333

USPS-Syn Trad-II 103 6 0.7922 0.7828
ICED-w 103 2⇥ 3 0.8373 0.8329
Trad-I 2,575 6 0.4581 0.3142

GSAD-Syn Trad-II 507 6 0.4504 0.3105
ICED-w 507 2⇥ 3 0.8376 0.8332

MV. Data samples in the highest certainty group will
train F after those in the second-highest group are
picked. In experiments, we denote our designed warm-
up training strategy as ICED-w. As a comparison, we
implement one common warm-up training strategy used
in literature for learning from noisy labeled data that
uses all available data simultaneously to warm up the
model. We denote this warm-up strategy as Trad-I.
Another warm-up training strategy Trad-II, which is
the same as Trad-I, except it only uses data samples in
the highest, second-highest, and third-highest certainty
groups rather than all the available data samples. In
other words, Trad-II chooses the same data samples
adopted in our designed warm-up training strategy
ICED-w and uses them to feed F at the same time. For
evaluation, we report the classification performance of
F by training on di↵erent warm-up training strategies
in Table 3. We observe that the classifier F training
by ICED-w achieves the best classification performance,
comparing with Trad-I and Trad-II, on all datasets.
Thus, our designed warm-up training strategy more
e↵ectively initializes ICED.

4 Related Work

4.1 Processing Crowdsourced Label Inferring
true labels from crowdsourced labels is a challenge as
the crowd workers have diverse expertise [35]. A naive
approach to infer true labels is majority voting (MV),
which uses the majority of annotated labels as the true
label. The MV approach performs poorly in practice,
as the crowd workers have diverse expertise and reliabil-
ity. An Expectation-Maximization (EM) [6] approach
addresses the di↵erences between crowd workers by es-
timating the error rate of each crowd worker from the
crowd labels. Therefore, an EM approach has higher
accuracy than MV in inferring true labels. Inspired by
this, Whitehill et al. [32] used an iterative approach con-
sidering both sample di�culty and crowd worker relia-
bility to infer true labels. The above approaches focus
only on inferring true labels. Some recent works inte-
grate true labels inference with downstream tasks. Ka-
jino et al. [15] developed a clustered personal classifier
method that simultaneously trains a classifier and esti-
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mates a cluster of workers. Rodrigues et al. [26] gener-
alized Gaussian process classification considering crowd
workers with diverse expertise. Raykar et al. [25] de-
signed an EM-based approach to jointly learn a crowd
worker noise model and a regression model. Khetan et
al. [16] proposed another EM-based approach for learn-
ing from crowdsourced labeled data by jointly modeling
latent true labels and crowd worker qualification. Guan
et al. [9] modeled information from each worker and then
learned combination weights via back-propagation. As
all the above approaches assume a uniformed label dis-
tribution as prior knowledge for initialization, they can-
not achieve good generalization when the given training
set has an imbalanced true label distribution.

4.2 Handling Imbalanced Data Existing ap-
proaches to handle imbalanced data mainly falls into
two categories: re-sampling and re-weighting. Re-
sampling approaches balance the imbalanced data
through under-sampling data samples from majority
classes [34, 21] or over-sampling data samples from mi-
nority classes [4, 10, 13]. As under-sampling approaches
often discard several data samples, over-sampling ap-
proaches are better in practice. Synthetic Minor-
ity Over-sampling Technique (SMOTE) [4] is a well-
accepted over-sampling approach. Instead of duplicat-
ing existing minority data samples to inflate minority
classes, SMOTE produces unseen synthetic minority
samples by applying linear interpolation operations be-
tween a specific minority sample and one of its near-
est neighbors within the same class. Several variants
of SMOTE [10, 13] further improve the prediction per-
formance of classifiers training on imbalanced datasets.
Re-weighting approaches allocate di↵erent weights for
di↵erent classes or even di↵erent data samples. For ex-
ample, Lin et al. [20] proposed Focal loss to reshape the
standard cross entropy loss such that it down-weights
the loss assigned to well-classified data samples. Cui et
al. [5] presented to utilize the data overlap measurement
to quantify the e↵ective number of samples for each class
and re-weight each class by the inverse of the number
of e↵ective samples per class. Existing imbalanced data
handling approaches assume that the given labels are
determinate and noise-free, which is not the case in
crowdsourced scenarios. Therefore, learning from im-
balanced crowdsourced labels needs to be addressed.

5 Conclusion

In this paper, we investigate the problem of learn-
ing from imbalanced crowdsourced labeled data. We
present a novel ICED framework to deal with the im-
balanced true label distribution and noisy crowdsourced
labels. ICED framework alleviate the negative impacts

of imbalanced true label distribution while using the
supervised information in the crowdsourced labels. To
evaluate the performance of the ICED framework, we
apply ICED into a classification task by training on
both synthetic and real imbalanced crowdsourced la-
beled datasets and compare its performance with sev-
eral representative crowdsourced label processing ap-
proaches. Extensive experimental results demonstrate
the e↵ectiveness of our proposed framework ICED on
learning from imbalanced crowdsourced labeled data.

In the future, we plan to modify our ICED frame-
work to fit the multi-class imbalanced crowdsourced la-
beled data. In addition, we are also interested in explor-
ing ICED based new framework to handle other imbal-
anced noisy labeled data, such as inexact labeled data.
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