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exchange, storage, and synthesis can support future design activities.
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1 Introduction
The recent push for digitalization and adoption of information

systems (ISs) in engineering design seeks to improve the efficiency
and effectiveness of design organizations [1,2]. Intelligent digital
design systems help carry out parallel and synergistic activities to
enhance design quality and success rate of one-time development
[3]. Pursuit of greater automation generates increased interest in
design science perspectives in IS research, specifically on system
design methods, human–computer interfaces, information retrieval,
and information exchange algorithms [4,5].
Digitalization transforms design activities in several ways: repla-

cing paper-based requirements documents with information
systems, streamlining design activities between geographically dis-
tributed design teams with web-based platforms [6–8], replacing
higher fidelity tools with physics-based meta-models [9], and inte-
grating organizationally dispersed tools with novel computational
architectures [9]. This transformation affects designer activities
and, in turn, their behavior, particularly in multidisciplinary
design where designers have limited knowledge outside of their dis-
cipline. Designing a complex artifact involves the exchange of
information between design actors with diverse expertise and geo-
graphically separated by large distances. Design decisions in one
subsystem affect the constraints and parameters of others, obfus-
cated by limited knowledge. Advances in disciplinary analysis
further aggravate the problems caused by this knowledge gap [8].
To take full advantage of digitalization, IS capabilities must

support design actor behavior and design organization characteris-
tics. However, generalizable knowledge about how IS are used in
a design context is understudied because of the difficulty of con-
ducting studies in operational environments. To address this gap,
we study how digitalization affects designer communication strate-
gies and resulting process efficiency in a prototypical virtual design

studio. Results of an observational study across 10 design sessions
suggest that adapting two concepts—value-driven design and agile
design—to industrial design operations may yield benefits.
This paper frames an aircraft design problem as a multi-level

and multidisciplinary design activity using a web-based IS. An
observational behavioral experiment studies the effect of IS on
resulting design activities and outcomes. This study seeks knowl-
edge and principles to improve the efficiency of systems engineering
and design activities with advanced IS. We extend results and
observations to evaluate new features to improve information
exchange, develop new tools such as computational design assis-
tants, and implement new design methods to improve design team
performance.

2 Background
2.1 Engineering Design. Tayal [10] defines engineering

design as an iterative decision-making process in which basic
science, mathematics, and engineering sciences convert resources
to meet stated objectives. Iterations span multiple disciplines in
large-scale design problems that require a wide range of
expertise [11].
Disciplines are defined in terms of knowledge areas or compo-

nents. For example, aircraft design disciplines possess knowledge
in functional areas such as aerodynamics, propulsion, and control
or components such as wing, tail, and fuselage. There could be hun-
dreds of such disciplines depending on the organizational architec-
ture [12]. Individual disciplines are handled by subsystems and
systems designers who coordinate the activities of the subsystems.
Subsystems are often interdependent and coupled by the physics

of the design problem. Design decisions in one subsystem depend
on the design parameters controlled by other subsystems [13]. Sub-
systems also have limited knowledge of how design decisions affect
constraints and parameters of other subsystems.
Information exchange between subsystems can help overcome

interdependencies and knowledge gaps. However, design systems
face communication and organization challenges as barriers to
smooth information exchange. Communication challenges include
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heterogeneous computing environments and high communication
costs [8]. Organization challenges include geographic barriers
between subsystems and institutional constraints on free informa-
tion flow [12]. Hindered information flow results in schedule over-
runs, increased design cost, and project delays which adversely
affect the competitive edge [8].
Studying interdependencies and interactions between system ele-

ments from technical and behavioral perspectives can help address
challenges to information exchange. Technical studies view system
elements as design tasks or product components to focus on charac-
teristics such as chronological task order, design complexity, and
coupling between disciplines. Behavioral studies view system ele-
ments as design actors to focus on human factors such as balancing
cognitive load, minimizing bias, and preventing strategic behavior.
One class of technical studies models coupling between design

tasks driven by physical or logical connectivity or resource
exchange in designed components which can be reduced by
decreasing feedback and information exchange requirements. The
design structure matrix (DSM) is a popular matrix representation
of interdependencies between design tasks [14]. Smith and Eppin-
ger [15] developed a Work Transformation Model to predict
which features in an automotive brake system will require many
iterations. DSM algorithms such as clustering, partitioning, sequen-
cing, and tearing aim to reorder the matrix elements according to
some criteria such as reducing feedback, information exchanges,
and coupling [14,16,17]. Reducing feedback characteristics of inter-
dependent tasks in concurrent engineering results in less iterations
[18]. Similarly, reducing coupling between design tasks decreases
the number of design cycles [19]. Simply changing the content of
some design tasks—such as decomposing coupled tasks or chang-
ing task specifications—decreases the number of potential iterations
by as much as 50% in aerospace applications [20]. Information
technology, such as systems that predict implications of design
modifications on other subsystems, could hypothetically help
decompose coupled tasks but broader implications on the behavior
of design actors are not well understood.
Another class of technical studies streamlines communication of

system objectives and balances subsystem optimization to improve
efficiency. Value-driven design (VDD) structures system engineer-
ing to communicate system objective functions down to each com-
ponent and maintain balances between tradeoffs [21]. Cheung et al.
[22] show how VDD enables rational decisions to be made at every
level of engineering design using aero-engines as context. Castagne
et al. [23] show VDD concepts that allow the manufacturer to
develop more efficient aircraft fuselage designs with higher profit
and operator gains. However, VDD requires a human value judg-
ment to synthesize a scalar value measure from system attributes
and behavior of subsystem design actors in response to such infor-
mation is not well understood.
Multidisciplinary design optimization (MDO) studies numerical

optimization techniques to design engineering systemswithmultiple
disciplines [12,24,25]. Martins and Lambe [12] compare MDO
architectures using a common framework to visualize data depen-
dency and information flow between computational components.
Although MDO literature extensively studies distributed architec-
tures to solve coupled design problems, the sole focus is to
improve iteration efficiency assuming a given behavior of the
design actors. The manifestation of distributed architectures on the
iteration and information exchange behavior of design actors is not
well-understood. For example, some disciplines in aircraft design
are more computationally expensive than others [26], leading to
asymmetric delays and failures to complete design task in the allotted
time. Communication pattern and designer behavior in such a hetero-
geneous distributed environment are not understood.
Behavioral studies focus on design actor characteristics, cogni-

tive loads from design task allocations, and effects of information
availability. Chuadari et al. [27] investigated how the design cost
and task complexity affect the process-level information acquisition
decisions made by human designers. Hirschi and Frey [28] studied
the effect of cognitive load on problem-solving in coupled

parameter design problems, showing evidence that limited
working memory significantly limits designer efficiency. These
behavioral studies focus on the effect of characteristics of design
problem such as coupling and complexity on designer behavior.
The effect of information technology on designer behavior is not
well understood, even though it has been shown that information
hiding may lead to inefficiencies in iterative cycles described as
design churn [29].

2.2 Information Systems for Engineering Design. Informa-
tion systems are key knowledge management components of engi-
neering design that facilitate interaction and information exchange
between members of a team [30]. Domain experts from several dis-
ciplines need to exchange information efficiently to prevent diver-
gence of local engineering models [31]. Engineering tools and
data are specific to a discipline, and it is challenging to share hetero-
geneous engineering data with other disciplines. Factors at actor-,
project-, and company-level organizations influence shared under-
standing in collaborative design [32]. Parallel to general advances
in IS technology, applications of IS to engineering design cross
several paradigms.
Concurrent engineering (CE) is an integrated design methodol-

ogy matured in the 1990s to shorten lead times, improve customer
satisfaction, and reduce costs by minimizing communication delays
between disciplinary designers through co-location and IS infra-
structure [33]. The five pillars of modern CE include the team
(people), a model (shared design knowledge), tools (software appli-
cations), the process (sequence of activities), and the facility (sup-
porting infrastructure, including IS) [34]. The aerospace domain
exhibits the strongest adoption of CE during conceptual design
due to the strong coupling between disciplines [35]. IS infrastruc-
ture for CE exchanges design parameters between disciplines, com-
monly via macro-enabled spreadsheets, and aggregates and tracks
resulting system attributes over time.
Efforts to improvemodel interoperability in the late 1990s, includ-

ing automation for MDO activities, developed IS technology to inte-
grate disciplinary physics-based models. For example, the MODELICA

modeling language facilitates exchange of models and model librar-
ies with high adoption in the automotive domain [36]. The associated
FunctionalMock-up Interface (FMI) standard allows dynamicmodel
interaction using C-language code, linked binaries, and an XML con-
figuration file [37]. Other co-simulation architectures compose dis-
crete or continuous time models [38]. Distributed co-simulation
standards such as IEEE 1278 Distributed Interactive Simulation
(DIS), and IEEE1516HighLevelArchitecture (HLA) leverage com-
puter networks to exchange information via standard protocols.
More recent interest in model-based systems engineering

(MBSE) applies IS platforms to a broader scope of design activities
by establishing a single-integrated model shared across a design
organization [39]. Modeling languages such as the integrated
computer-aided manufacturing (ICAM) definition for functional
modeling (IDEF0), and object-process methodology (OPM), and
systems modeling language (SysML) provide graphical representa-
tions of a shared model. Supporting IS infrastructure includes com-
mercial and open source platforms to retrieve, view, edit, and save
shared models. For example, the Open Model-based Engineering
Environment (MBEE) provides model development kits, model
management databases, and view editors to facilitate information
exchange [40].
Despite progress over the past 30 years, widespread adoption of

IS platforms for integrated modeling across engineering design as a
field remains sparse. MBSE itself is in the early stages and carries
many holdover activities (and culture) from traditional systems
engineering that may not match future design processes [41]. In
contrast to the centrally defined IS architectures such as MODELICA

and SYSML that require specific modeling languages or software,
service-oriented architectures (SOAs) describe an enterprise data
management strategy that coordinates information exchange using
“loosely coupled, reusable, standards-based services” with data
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interoperability rather than application interoperability [42]. Similar
to other IS applications such as web services, SOA may help
accommodate increasing scale and complexity necessary in digital
engineering applications, even by simply “wrapping” or abstracting
existing co-simulation techniques [43].

2.3 Research Gap. While many new IS platforms have been
proposed ranging from CE to MBSE, there is a general lack of
understanding of how information technology influences communi-
cation behavior of the design actors, particularly in a multi-level and
multi-disciplinary design environment. On one hand, IS reduces the
cost of communication to alleviate barriers; however, it also pro-
vides pervasive connectivity that may strengthen interdependen-
cies. A stronger theoretical basis for the relationship between IS
capabilities and engineering design outcomes could help inform
future investments in IS technology with fewer costly trials and
experiments.
To address this gap, our primary research question (RQ) asks:

how do IS-enabled communication strategies such as information
exchange frequency, storage, and synthesis relate to process effi-
ciency for decentralized design? The process efficiency is measured
as improvement rate in design quality, where a higher quality cor-
responds to a design closer to meeting system requirements.
Our research approach collects and analyzes data from an obser-

vational human subject study conducted on a web-based digital
design platform. The design platform hosts a scaled-down surrogate
aircraft design task that aligns with industry design operations to
support transfer of insights to inform technology investment. We
structure the design task to collect observational data while captur-
ing technical information exchange between decentralized design
roles. This activity also created a distributed software architecture
with a multi-user interface that controls access to design parameters
and analysis models to mimic design activities of geographically
distributed multi-disciplinary design teams.
Data collection during the observational study records design

team activities, interactions, and outcomes. Correlation analysis
identifies relationships between process and outcome variables of
interest. Discussion aligns observations with design principles
such as VDD, agile design, and version control in MBSE.

3 Aircraft Design As a Surrogate Design Task
To advance research objectives, this section explains the founda-

tions, formulation, and implementation of an electric aircraft design
problem used as a surrogate design task.

3.1 Abstract Model of Engineering Design. Building on a
foundation of decision-based design [44] and axiomatic design
theory [45], a design task is composed of N input design para-
meters (DPs) x = {x1, . . . , xN} and M functional requirements
(FRs) y = {y1, . . . , yM} related to system performance attributes and
evaluated by a system model y=Fy(x). Traditional requirements-
based design activities pursue a set of R binary requirements z =
{z1, . . . , zR}, zi ∈ {0, 1} related to FRs through a requirements func-
tion z=Fz(y). For example, the requirement

zi =
1 yj ≥ y⋆j
0 otherwise

{
(1)

verifies if scalar FR yj meets required threshold y⋆j .
The static relationship between DPs and FRs can be characterized

by an N ×M design matrix D where element dij≈∂yj/∂xi measures
the sensitivity of FR yj to DP xi. Binary design matrices only char-
acterize the presence (1) or absence (0) of interactions. An N×N
design structure matrix (DSM) M characterizes interdependencies
between DPs where element mij≈∂xj/∂xi, subject to iso-
performance outcomes (i.e., identical FRs). Multiplying the
design matrix with its transposeM=D×DT provides an undirected
physical domain DSM derived from functional dependencies [46].

Systems engineering assigns control and visibility of DPs and
FRs (respectively) to members of a design organization of S
actors. The binary S×N control matrix C with elements cij ∈
{0, 1} indicates if actor i controls DP xj. Typically, each DP is
only controlled by one actor such that

∑
i cij = 1. A binary S×M

visibility matrix V with elements vij ∈ {0, 1} indicates if actor i
views FR yj. A S× S social dependency matrix S=C ×D×VT char-
acterizes interdependencies among design actors where element sij
indicates actor j depends on information from actor i.
The design process follows an iterative sequence with an initial

design vector x(0) and subsequent vectors x(t) after design period
t > 0. First, design actors work exclusively within assigned DPs
and FRs. For example, actor k modifies controlled DPs xk =
{xi:cik = 1} and observes effects on visible FRs yk = {yi:vik = 1}
using a local subsystem model yk=Fy,k(xk, x−k) where x−k =
{xi:cik = 0} represents dependent DPs controlled by other design
actors (superscripts omitted for clarity). Note that x−k requires
explicit information exchange with other actors to receive updated
values. After design iteration t, system-level integration composes
DPs from each design actor to yield x(t) = {xk} with associated
FRs y(t)=Fy(x

(t)). The iterative sequence repeats with subsystem-
level modifications and system-level synthesis.

3.2 Aircraft Design Task. Aircraft design is an example of
large-scale coupled design problems. It exhibits a large design
space and tightly-coupled decisions across subsystem boundaries,
demanding systems engineering to coordinate technical analysis.
For example, the thrust requirements of the propulsion subsystem
are dependent on the aerodynamic drag produced by fuselage and
airfoils. Data from each subsystem must be readily available to
inform design of dependent subsystems.
Aircraft design typically consists of three phases: conceptual

design, preliminary design, and detailed design, differing in the
detail of design definition. This task targets the preliminary
design phase which aims to choose design parameter values for a
selected concept (i.e., parameterization). It is an iterative pro-
cess consisting of an inner loop and an outer loop for each iteration
[8]. Figure 1 shows a schematic of the design activities during the
inner loop and outer loop for each design iteration. The inner
loop performs disciplinary analysis (structural, aerodynamic, pro-
pulsion, controls, etc.) to achieve subsystem-level design require-
ments. Once converged, an outer loop performs system-level
analysis (experimental testing or computer simulations) on the com-
plete aircraft. If the system-level requirements are not achieved, the
whole process is repeated in a new iteration.

Fig. 1 Activity diagram with inner and outer design iteration
loops for aircraft preliminary design
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Following the abstract task definition in Sec. 3.1, this study
develops an electric aircraft design task abstracted into a modular
form Ref. [47] with four subsystems: fuselage, payload (battery),
propulsion (motor and propeller), and airfoil (wing and tail). The
task defines 12 DPs, 12 subsystem-level FRs, and six system-level
FRs tied to design requirements. Table 1 presents a binary design
matrix D showing dependencies between DPs (rows) and FRs
(columns). Although modular at the subsystem level, the task is
highly integral at the system level due to numerous interdependen-
cies (typical of aerospace domain problems).
The task is allocated to a design organization with four actors and

five roles: four subsystem roles specific to each actor and one
systems role shared among the four. Subsystem roles operate
design offices that control assigned DPs. Each design office has a
corresponding technical office to perform technical analysis to
yield visible subsystem FRs. Technical offices use computational
models such as Vortex Lattice Method and Blade Element
Theory, empirical relations, and semi-analytic equations described
in Appendix B.
The system role operates a system office that collects information

from all subsystems to analyze six additional FRs. Six correspond-
ing system-level requirements:

z1 =
1 y13 ≥ 30min

0 otherwise

{
z2 =

1 0 ≤ y14 ≤ 10N

0 otherwise

{

z3 =
1 0 ≤ y15 ≤ 10N

0 otherwise

{
z4 =

1 −5 ≤ y16 ≤ 5N −m

0 otherwise

{

z5 =
1 y17 ≥ 0m3

0 otherwise

{
z6 =

1 y18 ≤ 30USD

0 otherwise

{

seek to meet a minimum endurance, constrain flight dynamical (lift,
thrust, moment) and physical (volume) properties to valid regions,
and meet a cost threshold.

3.3 Virtual Design Studio. The VIRTUAL DESIGN STUDIO, devel-
oped as part of this research, is the distributed software application
that hosts design experiments for the aircraft design task as a proto-
type of IS infrastructure. The overall design philosophy is to
provide a simple and extensible multi-user interface accessible to
users. The key capabilities required to support experiments
include the following:

(1) Concurrent use by geographically distributed design team
members

(2) Technical information exchange between designer roles
(3) Simple and intuitive user interface controls and feedback
(4) 3D renderings or visualizations of design concepts
(5) Interface with automated execution of technical analysis

models in PYTHON

(6) Automatic logging of all user actions for experimental obser-
vation and post-processing.

The software architecture in Fig. 2 follows a layered
service-oriented architecture with three main components: (1)
front-end/client services, (2) middleware/application services, and
(3) back-end/technical services. The layers are connected using
HyperText Transfer Protocol (HTTP) requests, containerized
using Docker virtualization, and deployed/hosted on cloud comput-
ing instances.
The front-end services provide a browser-based client to design-

ers and administrators during experimental design sessions.
Designer communication with the application is secured with a
SSL connection (i.e., HTTPS) via a reverse proxy. Each actor con-
trols a design interface (Fig. 3(a)) which provides control over the
constituent DPs, domain-specific outputs of technical analyses
(including 3D visualizations for airfoil and fuselage components),
buttons to trigger the analysis outputs (Update) and advance to
the next round of design iteration (Ready), and a chat-based mes-
saging system. Each actor also has access to a system office

(Fig. 3(b)), which shows all the system-level FRs and visualization
of the whole aircraft.
During a design session, design actors independently modify and

update their assigned DPs and supporting FRs during a design
period of up to 150 s. After this period (or when all four designer
roles signal “Ready”), the interface switches to the system-level
outputs for review of system FRs, constraint limits, and satisfied
requirements. Finally, when all designers signal “Ready” to start
the next round, the interface switches back to the domain-specific
components for the next round of design iteration.
Middleware services connect the front-end with the back-end to

provide user authentication, maintenance of the application state,
and orchestration of technical services to support a design task.
Service endpoints update the design task, toggle the application
mode and timer state, broadcast chat messages, accept new DP
values, and disseminate technical analysis results as FR values. To
improve application responsiveness, a caching system stores com-
monly accessed results (e.g., system-level technical analyses
required for all designer clients at the end of a design round) in
memory.
Back-end technical services contain all of the engineering

models needed for technical analyses. It leverages OPENVSP
2 and

SUAVE [48], two domain-specific modeling software tools for air-
craft design and analysis. OPENVSP offers a parametric environment
to generate and modify aircraft 3D geometry and produce visuali-
zations as X3D files. SUAVE provides aerodynamic-, structural-,
and mission-specific analysis of design configurations generated
using OPENVSP. Both provide a PYTHON API so the back-end services
wrap the underlying functionality as a web service. Notably, the
OPENVSP PYTHON API is not thread-safe so simultaneous requests
to dependent technical analyses can cause concurrent modification.
To mitigate this technical limitation, the middleware uses asyn-
chronous locks to ensure only one active back-end service
request for OPENVSP at a time.

3.4 Design Task Assumptions and Limitations. While
closely following the abstract model of engineering design, the pro-
posed task has a few limitations. First, it is representative of
large-scale systems engineering tasks only at an abstract level. It
specifies only four design actors, rather than the hundreds normally
involved in preliminary design studies (thus, each actor models
more than one individual). The task unfolds over a period of
approximately 30min, rather than weeks or months, and assumes
rapid technical analysis feedback and instant chat-based communi-
cation. No domain experience is assumed, and the technical analy-
ses contain many simplifications and approximations. Additionally,
no systems engineering requirements are provided at the subsystem
level such that design actors must implement their own strategy to
achieve system-level requirements.
Despite the purposeful simplifications, we tailored the aircraft

design task to need several design iterations to meet stated design
requirements, yet still be solvable in an experimental timescale of
about 1 h including training. It was purposefully structured to
have strong subsystem coupling, similar to integral systems in aero-
space applications. We carefully chose task dimensions such as the
problem size (number of DPs) and number of subsystems to tailor
task complexity to cognitive and communication abilities in the
virtual design studio. Finally, designer actions to run technical
office and system office analyses and communicate via the text-
based chat system demand significant resources relative to the
limited time availability, permitting study of how communication
strategies affect outcomes of IS-enabled design teams. While the
mode of communication does not influence outcomes in some
studies [49], other factors such as synchronicity may have stronger
impacts on distributed teams [50] and should be investigated in
further studies.

2http://www.openvsp.org
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4 Observational Study on Communication Strategies
The virtual design studio that hosts surrogate aircraft design task

provides a platform to conduct human subject studies. This section
reports the procedure, collected data, and observations from an
initial exploratory human subject study of observed communication
strategies.

4.1 Observational Study Overview. This study aims to
understand the correlative relationship between communication
strategies observed across design groups and associated design out-
comes. There are no control variables in the study, which limits the
ability to determine causality between input/process factors and
outcome factors. However, we observe factors associated with
high- or low-performing teams for further study.
We conducted 10 design sessions, each with four participants

(one per design office). The participants work in a co-located
setting but communication is only permitted through the text-based
chat interface during the design task (i.e., no speaking). Participants
perform subsystem- and system-level design iterations until either
they achieve the design goal of meeting all six system-level FRs
(as described in Sec. 3.2) or run out of time. In the subsystem-level
loop, design actors update DPs of their assigned design office and
view updated subsystem FRs from the technical office which
takes less than 1 s to compute and retrieve. In the system-level
loop, the design actors receive the system office analysis results
synthesizing information from all the subsystems. During this
time, the design actors review system-requirements, plan the next
steps, and delegate tasks for the next iteration.

4.2 Data and Construct Operationalization. Automated
logs collect the time-stamp, input DPs, and output FRs for each
design office update (design action), time-stamp and content of
all chat messages, and duration of each subsystem- and system-level
iteration for each session.
Chat messages, design actions, design iterations, and the system-

level time fraction are process variables that measure various
dimensions of the observed communication strategies. Chat mes-
sages measure direct communication between design offices while
design iterations and time in the system-level loop measure indirect
communication via technical analysis feedback that provides infor-
mation about the state of other subsystems. The design iteration rate
measures the frequency that analysis results are available to partic-
ipants. The time spent on the system-level loop measures the tem-
poral resources allocated to interpret system-level analysis results.
A system-level normalized error metric measures design quality

after each iteration based on the distance (in FR space) from
meeting all requirements normalized by the variation in each FR.
Appendix A provides details including the equation and normaliza-
tion constants such that normalized error ranges between 0 and 1. A
design that meets all requirements has normalized error of zero.

4.3 Study Protocol. We conducted ten sessions by recruiting a
pool of 40 student participants. The minimum eligibility for recruit-
ment included at least junior standing in a science/technology/engi-
neering/mathematics degree program and a prior engineering design
experience. A majority of recruited participants were graduate stu-
dents with an undergraduate engineering degree. Incentives for par-
ticipation include a $10 online retail gift card plus a bonus of $5, the
design meets all system-level FRs before the end of the session.
Each session starts from a baseline design that meets two of

the six requirements—endurance (z1) and volume check (z5).
Appendix B shows the design parameter values of the baseline
design. A 1-h session proceeds as follows:

• 10 min: arrival and informed consent.
• 2 min: pre-recorded video (for consistency across sessions)

that describes the virtual design studio, their roles, and exper-
iment roles.

• 8 min: self-exploration of the web interface.
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• 10 min: tutorial design task that mimics design processes such
as timed design iterations and chats.

• 30 min: experimental aircraft design task.

Participants maintain the same design role for tutorial and exper-
imental tasks to build familiarity with assigned DPs and FRs. The
tutorial and experimental design tasks have different cruising
speeds to allow general learning about the problem domain
without transferring specific solution DPs.
We do not set constraints on the maximum number of messages

or design iterations. However, a maximum time of 150 s is enforced
in the subsystem-level and system-level of each iteration such that
each complete iteration lasts at most 300 s (5min) and at least six
design iterations occur in 30min. All four participants must mutu-
ally agree to end a design iteration before the maximum allotted 150
s, signaled by each participant clicking the “Ready” button on their
interface.

5 Results and Analysis
This section reports observed results, starting with an overview of

process and outcome variables in Sec. 5.1. Next, Sec. 5.2 analyzes
the correlation between process and outcomes variables observed

across the 10 sessions. Finally, Sec. 5.3 further investigates the tem-
poral dynamics of process and outcome variables.

5.1 Session Overview. Table 2 summarizes the process
metrics related to communication strategies and outcome metrics
for design quality in each session. Only two sessions (4 and 6)
achieved the design goal of meeting all six system-level require-
ments. Session 6 completed the fastest and was labeled the highest-
performing session. Session 8 was labeled the lowest-performing as
they produced the design with the lowest quality and only met two
system-level requirements. Inter-team variation is attributed to
factors such as differences in attitude/behavior, communication,
leadership, and trust [32] but not necessarily differences in shared
understanding, disrupted routines [51], or knowledge representation
[31] because of the surrogate task’s simplified and synthetic nature.
Figure 4 shows the 3D visualization of the baseline and final

designs for each session to illustrate the breadth of geometries
pursued. Figure 4(a) shows the baseline aircraft. Figures 4(e) and
4(g) show the final aircraft geometries from the sessions that pro-
duced designs that met all system-level FRs. Following the founda-
tion in domain-specific tools SUAVE and OPENVSP, geometries that
resemble traditional aircraft generally provide higher design

Fig. 2 Virtual design studio software architecture including front-end, middleware, and back-end services

Fig. 3 Front-end client for design actors with assigned DPs (horizontal sliders) and FRs (horizontal sliders): (a) airfoil design
office and (b) system office
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quality, even though geometry only captures a subset of DPs.
Figures 4(b) and 4(i) show the final aircraft geometries produced
by sessions with the highest normalized error.
While a detailed analysis of chat messages is beyond the scope of

this study, we selected messages from one successful (Session 6)
and one failed session (Session 8) to help give some context and
flavor to the following analyses. Tables 5 and 6 in Appendix C
show text messages in the first and last few design iterations for Ses-
sions 6 and 8. A few qualitative observations can be made observing
text messages from Sessions 6 and 8. In general, we observe that the
more successful session had: (a) a higher quality of the text, with
fewer grammatical and spelling errors, (b) more system-focused
and goal-directed communication, and (c) a higher pressure to hit
ready and complete more iterations during the allotted session
time. For both sessions, shorter and more directed text messages
appeared toward the end of the session.

5.2 Correlation Analysis. Figure 5 shows a panel of four
scatter plots that visualize observed relationships between process
and outcome variables. Nonparametric correlation analysis using
Spearman’s rank correlation coefficient (rs, computed with SciPy
1.4.1 function stats.spearmanr) quantifies the magnitude
and significance of acausal relationships. An associated p-value
based on a two-tailed hypothesis test estimates statistical signifi-
cance with ν= 8 degrees -of-freedom. While the small number of
samples limits the strength of conclusions, results indicate some
trends for additional investigation.
Figure 5(a) compares the rate of design iterations (number itera-

tions divided by session duration) with the associated session per-
formance via normalized error. Correlation analysis shows a
negative Spearman’s rank correlation coefficient of rs=−0.626
with a moderate level of significance (p= 0.053). Therefore, evi-
dence suggests quicker design iterations are correlated with lower
normalized error and better performance. Limited to acausal infer-
ence, this result cannot rule out other factors that contribute both
to higher iteration rates and improved performance.
Figure 5(b) compares the fraction of time in the system office

with the resulting normalized error. Recall the default timer allots
150 s for both the design office and system office phases, yielding
a reference system office time fraction of 0.5 which can be
altered as participants advance between phases. Half of the sessions
spent more than 50% of the overall time in the system office phase.
Correlation analysis shows a negative Spearman’s rank correlation
coefficient of rs=−0.438 where the larger system office time frac-
tions are correlated with lower normalized error (and improved per-
formance); however, the limited statistical significance (p= 0.206)
cannot support strong claims.
Figure 5(c) compares the rate of chat messages exchanged (total

messages divided by session duration) with the resulting normalized
error. Correlation analysis shows a positive Spearman’s rank corre-
lation coefficient of rs= 0.632 with moderate level of significance

(p= 0.050). Evidence suggests a larger volume of messages
exchanged is correlated with lower design quality and session per-
formance, contrary to expectations. Possible explanations could
stem from the primitive nature of the chat interface that limits effec-
tive communication or reliance on the chat interface for teams that
struggle to conceptualize the task.
Finally, Fig. 5(d ) compares the rate of design actions performed

(total actions divided by session duration) with the resulting session
performance via normalized error. Correlation analysis shows a
nearly zero Spearman’s rank correlation coefficient with low signif-
icance (rs= 0.036, p= 0.920) that indicates no relationship exists
between the frequency of DP changes and design outcomes.

5.3 Process and Outcome Variable Time Series. The pre-
ceding analysis only investigates process and outcome metrics at
the conclusion of a session. To get a better understanding of the
internal dynamics during a session, Figure 6 shows a panel of
four time series plots to illustrate the evolution of process and
outcome variables.
Figure 6(a) shows most sessions maintain a constant design iter-

ation rate with a slight increase at the end, attributed to session
deadline boundary effects. Several sessions maintain iteration
rates near the minimum (5min per iteration). Figure 6(b) shows
most sessions exchange messages at a constant rate, and Session
3 exchanges significantly fewer messages compared to all other ses-
sions. Figure 6(c) shows a general decreasing design action rate
during a session and distinct patterns between design office
phases (when actions accumulate) versus system office phases
(when no actions are possible).
The normalized error per design iteration in Fig. 6(d ) shows a

general downward trend as teams progress during the design task;
however, improvement is not monotonous for most sessions and
some sessions do not submit the best design. Figure 7 compares
the best observed design at any iteration to the final submitted
design showing that six of the ten sessions did not end with the
highest quality design.

6 Discussion and Recommendations
Based on results from the exploratory study, this section dis-

cusses potential opportunities to improve design performance by
augmenting the IS platform. The discussion is organized around
information exchange and storage/synthesis as two essential func-
tions supported by IS. Additional reflection comments on limita-
tions of the surrogate design task and broader implications for
design in industry settings.

6.1 Information Exchange. The virtual design studio exhibits
three major types of information exchange: (1) design office feed-
back about how subsystem DPs impact subsystem FRs, (2)
system office feedback about how subsystem DPs impact system-

Table 2 Summary of observed process and outcome metrics from ten study sessions

Process Outcome

Session System office % Iterations Messages Actions Req. Met Norm. Err. Durationa

1 63.2 13 123 202 2 0.065 29:58.2
2 48.8 7 172 199 3 0.024 30:03.7
3 35.0 9 30 220 4 0.006 29:45.0
4 55.6 14 121 217 6 0.0 30:09.1
5 43.2 15 154 236 3 0.039 30:04.4
6 59.3 17 105 142 6 0.0 26:55.1
7 66.4 21 177 85 5 0.001 30:00.1
8 35.6 8 183 181 2 0.084 30:03.0
9 53.4 8 155 109 5 0.039 30:02.2
10 41.9 7 182 212 3 0.080 29:32.0

aMax session duration differs slightly from 30:00 due to experimental conditions.
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level FRs, and (3) chat messages exchanged between subsystems.
Observations of interactions and communication patterns guide
how and where to focus resources to improve effectiveness of a
digital design platform. Augmented communication protocols
seek to improve coordination and efficiency in decentralized
design activities.

6.1.1 Feedback and Communication Channels. Design teams
have freedom to choose how to allocate their time and attention
to various communication channels. Throughout a design session,
a team alternates between the design office phase to set DPs and
view subsystem-level FRs and the system office phase to view
system-level FRs. Figure 5(b) shows a large variation in system

Fig. 4 Comparison of baseline and final design geometries for each session (session 4 and 6:⋆ designmeets all require-
ments): (a) baseline, (b) session 1, (c) session 2, (d) session 3, (e) session 4⋆, (f) session 5, (g) session 6,⋆ (h) session 7,
(i) session 8, (j) session 9, and (k) session 10

Fig. 5 Correlation analysis between process and outcome variables observed (numbered by session)
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office allocations ranging from 35.0% to 66.4% and a weak positive
correlation with session performance. The system office phase
relays important feedback but also restricts designer modifications.
Future extensions could investigate improved channels to commu-
nicate system-level information or otherwise focus designer efforts
during the design office phase.
Chat messages are a less formal but immediate (i.e., outside the

design cycle) mode of information exchange, similar to e-mails or
telephone calls in practice. In general, information exchange in
any channel consumes limited time resources. Here, participants
face a tradeoff between allocating time to compose chat messages
or interacting with the design office. Figure 5(c) shows a negative
correlation between the message rate and session performance, sug-
gesting chat does not uniformly support design activities. However,
the lack of causality poses a major barrier to interpretation because
it is plausible that other individual- or team-level factors contribute
both to increased message rates (e.g., in attempt to establish a
common understanding of the problem) and lower overall perfor-
mance. Additional evidence is required to understand if reducing
the cost of this communication channel by, for example, allowing
voice communication, contributes to improved session
performance.

6.1.2 Design Iteration Frequency. Design iteration provides
repeated feedback during a session. Correlation analysis in
Fig. 5(a) indicates higher iteration rates are associated with
improved session performance. Additionally, Fig. 6(a) provides
evidence that the default timer may anchor the selected iteration
rate near 0.2 iterations per minute for some sessions. Augmenting
the interface with a lower default timer value may encourage
quicker design cycles and potential improvement in session
performance.
Eliciting faster design cycles aligns with agile design principles

which refer to making rapid changes in response to expected or
unexpected environmental changes [52]. Design agent failure to
meet requirements is one of the three distinct scenarios that
require an agile reaction to ensure timely production [52]. This sce-
nario aligns with observations that shorter design cycles facilitating
small continuous changes with more frequent design reviews and
feedback are associated with better design outcomes.
Frequent design iteration in the surrogate design task helps to

identify and resolve major dependencies across subsystem design
offices to achieve system-level FRs. Observations indicate certain
FRs, such as the moment balance, are sensitive to subsystem DPs
and require iteration to resolve concurrent modification. This
factor is likely amplified in the surrogate task as participants lack
deep disciplinary experience and formal change modification pro-
cesses; however, interdependencies also contribute to design
churn in industry applications [29]. In absence of a more structured
change management methodology, frequent iteration helps to
isolate the antecedent conditions of system-level FRs.
In industrial applications, faster design cycles translate to a

shorter time interval between critical design review phases but
also must recognize that early cycles reflect an incomplete design
concept. Practical logistics, organizational culture, overhead on iter-
ation cycles, and cognitive timescales limit the maximum viable
design cycle rate.

6.2 Information Storage and Synthesis. The virtual design
studio provides essential storage and synthesis capabilities to
record the current state of each DP and compute and display the
value of each FR. Even with a timer, Fig. 7 shows several sessions
failed to submit the “best” design in terms of normalized error. This
observation could be attributed to an inability to easily revert to a
previous design state or from cognitive difficulty in evaluating
and comparing holistic quality across iterations. The following sec-
tions discuss the potential benefit of storing a historical record of DP
changes and synthesizing a system-level metric to summarize the
high-dimensional FR space.

6.2.1 State History. Extending the scope of the virtual design
studio to store the history of design states, in addition to the
current state, allows individual design offices to revert to a previous
state. With the addition of a state history, a designer has four choices
during design process: revert DPs, update DPs, send a chat message,
or signal the end of an iteration. Reverting to a previous design state
may disrupt process continuity by accessing outdated dependent
information but judicious use could enable broader exploration
without losing a promising intermediate design state. Storing mul-
tiple design variants enables tradespace exploration following
design-of-experiments or a set-based principles that could further
automate some search activities, subject to computational
limitations.
IS-enabled design state history aligns with version control in

MBSE applications, despite current challenges for automatic and
universal adherence [53]. Providing a single repository with
version control is often impractical for inter-disciplinary organiza-
tions. Alternatively, providing different repositories and tools
with version control tailored to characteristics of each subsystem
e.g., PLM system for CAD/CAM, SCM system for software code
as a “Multiple Local Repository Approach” allows team members
within an organization use their individual computers to store ver-
sions they develop [53]. Outstanding challenges to be addressed
include timely notification of version changes and synchronization
of subsystem models.

6.2.2 System Metric. It is common for complex systems to
have hundreds or thousands of requirements. Tracking progress is
often limited to a few critical metrics such as system mass,
balance, or cost. The surrogate aircraft design task has compara-
tively few system-level FRs (six) but still presents a challenge to
quantify how “good” one set of DPs is from another. Synthesizing
a simple system-level quality measure as a scalar number would
help designers from all subsystem disciplines evaluate the collective
system-level performance. For example, the normalized error metric
used in analysis could be operationalized in the design task to
provide a scalar quality indicator. While mapping multiple FRs to
a scalar number loses some information, it would ease the cognitive
load. We do not quantify or measure the cognitive load on the sub-
jects in our study. In our approach, we tweaked the cognitive load so
that the design task was doable in 30min.
The concept of using a scalar metric as the basis for design deci-

sions aligns with elements of VDD. In VDD, subsystems receive
system-level information through value functions, equivalent to
the normalized error metric discussed here. In MBSE, requirements
engineering supports activities such as requirements elicitation from
end users, requirements allocation, requirements management, and
requirements validation as key components of such a quality metric
[54]. The use of normalized metric as a formal representation will
help convey end-user requirements to subsystem designers and
monitor its progress.

6.3 Revisiting the Research Question. We found information
exchange frequency to have mixed effects on session performance
depending on the type of information exchange. While a higher fre-
quency of chat messages correlated with lower overall performance,
frequent design iteration, and system office feedback enhanced
session performance, the conclusions are from student participants
under scaled-down experimental conditions. There needs to be an
additional study on whether these results translate to industrial set-
tings with expert designers. External factors such as experience
level of designers and time-scale of the experiment may influence
observations: a steeper learning curve may amplify the positive
influence of higher design iterations on novice designers and a
limited session duration may amplify the negative effect of chat
time. The inferences and observations are from an experiment
with a text-based chat interface. Audio- or video-based chat inter-
face might change frequency, volume, and quality of information
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exchanged. The effects of audio- or video-based chat interface are
not understood and is a limitation of this study.
The recommendation that information storage and synthesis

improve session performance that is from the observation that a
majority of sessions failed to submit their best design. This
recommendation ignores the fact that the sessions had a hard dead-
line of 30min, after which the participants were not allowed to
make any design updates. Alternative augmentations such as soft-
ening the deadline by providing additional time, in the end, may
improve performance. Besides, the effects of cognitive factors
and design continuity on information storage and synthesis need
further study.
Despite the limitations of the study, the virtual design studio and

the surrogate design task provide a basic approach for future studies
on the effects of digital information systems on design performance,
particularly in decentralized and web-based applications. The
observations and conclusions from a scaled-down lab study with
student participants resembled design principles such as agile
design, value-driven design, and version control in MBSE.

7 Conclusion
Engineers rely on IS-enabled design platforms to alleviate cogni-

tive and communication boundaries in engineering design.
However, knowledge of how IS technology influences design com-
munication and behavior remains limited due to the difficulty of col-
lecting data in operational design settings. This paper formulates a
surrogate aircraft design problem that can be completed by a team
of four non-expert disciplinary participants in approximately 30
min and implements a prototype IS platform as a browser-based
virtual design studio. While simplified, the surrogate task builds

on a foundation of decision-based design and shares structural simi-
larities to complex design problems.
The observational study collected process- and outcome-oriented

data from ten sessions of student design teams. While causality
cannot be determined for some significant relationships, results
provide evidence of important connections between design iteration
rate, message rate, and outcome performance. Observing individual
sessions shows several sessions fail to submit their best designs
despite having an on-screen timer to track the submission deadline.
The results in this paper provide an early and imperfect insight

into how information systems influence communication and behav-
iors among design teams. While there is a desire for future work to

Fig. 6 Process and outcome variable time series during each session (numbered by session)

Fig. 7 Comparison of the best design observed in each session
to the final submitted design (numbered by session). The dashed
line indicates if the best design were the final.
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adopt stronger control over input conditions, this will likely remain
difficult to the high variability in individual and team capability and
high cost of collecting observational data.
Observations from student participants show evidence for poten-

tial IS features to improve team performance: reducing the cost of
communication channels, anchoring a more frequent design itera-
tion rate (similar to agile design processes), providing a state
history of past design configurations (similar to version control in
MBSE), and synthesizing a scalar system metric to quantify
design quality (similar to VDD). While some of these features
resemble design principles, future work needs to explore their effec-
tiveness. While tailored to the surrogate design task in this study,
the virtual design studio may help support future research by pro-
viding a browser-based environment to conduct distributed design
sessions.

Nomenclature
t = design iteration number
s = session number
x = set of design parameters
y = set of functional requirements
z = set of binary requirements
C = control matrix (cij is 1 if actor i controls xj)
D = design matrix (dij is sensitivity of yj to xi)
M = design structure matrix (mij is sensitivity of xj to xi)
S = social dependency matrix (sij is 1 if j depends on i)
V = visibility matrix (vij is 1 if actor i views yj)
M = number of functional requirements
N = number of input design parameters
S = number of design actors
R = number of binary requirements
xi = ith design parameter
yi = ith functional requirement
zi = ith binary requirement

x(t) = set of design parameters after iteration t
Es = normalized system error in session s
Es
t = normalized system error after tth iteration in session s

Rs
t = system requirements met after tth iteration in session s

Fy(x) = model to evaluate functional requirements
Fz(y) = model to evaluate binary requirements
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Appendix A: Normalized Error Calculation
Equation (A1) computes the normalized error for iteration t of

session s for current FR values ysi,t with feasible range given by

lower bound y(L)i and upper bound y(U)
i , and normalization factor y(N)i .

Es
t =

1
6

∑18
i=13

max ysi,t , y
(U)
i

( )
− y(U)

i +min ysi,t , y
(L)
i

( )
− y(L)i

y(N)i

(A1)

The normalization factor corrects for scaling differences between
FRs (e.g., net moment, y16, has an order of magnitude higher
variability than net lift, y14). Table 3 provides y(N)i , y(L)i , and y(U)

i for
each FR.

Appendix B: Technical Office Details
This appendix describes the equations and analysis models for

subsystem- and system-level FRs for the aircraft design task.
Figure 8 illustrates a wireframe model of the baseline aircraft
modeled using OPENVSP with corresponding DP values in Table 4.

Fuselage Design Office. The fuselage design office controls the
geometry of the tapered cylindrical vessel that houses the payload
via the length (x1, m), max diameter (x2, m), and wing location
(x3, % fuselage). Subsystem FRs include mass (y1, kg), drag (y2,
N), and volume (y3, m

3).

Table 3 Normalized error constants

Functional Req. y(N)i y(L)i y(U)
i

Endurance (y13) 570.7min 30min 9999min
Net lift (y14) 55.62N 0N 10N
Net thrust (y15) 464.58N 0N 10N
Net moment (y16) 618.31 Nm −5 Nm 5 Nm
Net volume (y17) 6.4m3 0m3 9999m3

Cost (mass) (y18) 38.93 USD 0 USD 30 USD

Fig. 8 Baseline aircraft wireframe model

Table 4 Baseline aircraft design parameters

Subsystem Design parameter Value

Fuselage Length (x1) 1.57m
Fuselage Max diameter (x2) 0.86m
Fuselage Wing location (x3) 50 %
Payload Number cells (x4) 8
Payload Energy per cell (x5) 4.1 A h
Payload Location (x6) 58.72 %
Propulsion Diameter (x7) 0.63m
Propulsion Rotation rate (x8) 2900 rpm
Propulsion Number blades (x9) 2
Airfoil Wing span (x10) 2.39m
Airfoil Root chord length (x11) 1.15m
Airfoil Tail scaling (x12) 2.0
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Fuselage drag is calculated with empirical models. At constant
cruising speed, the zero-lift drag coefficient is given by [47]

C f
Do

= K 1 +
60

(x1/x2)3
+
0.0025
x1/x2

( )
x1
x2

where K is a constant independent of x1 and x2, estimated from CFD
analysis of the fuselage geometry. From C f

Do
, drag is given by

y2 =
1
2
ρairv

2S f
ref C

f
Do

where ρair= 1.225 kg/m3 is the density of the air at the cruising alti-
tude, v is the aircraft cruising speed, and Sref is the reference area of
the geometry which we estimate using panel methods in SUAVE. The
fuselage mass and volume

y1 = πx1x2ρskinρthk

y3 = πx1
x2
2

( )2

approximate the fuselage as a hollow cylinder with thickness ρthk=
3.175mm and material density ρskin= 1700 kg/m3.

Payload Design Office. The payload design office manages the
battery system that provides power to the propulsion system via
designing the number of cells (x4), charge per cell (x5, A h), and
location (x6, % fuselage). Subsystem FRs include available
energy (y4, Wh), required volume (y5, m

3), and mass (y6, kg).
Available energy is given by

y4 = x4x5Vcell

where Vcell= 3.7V is the battery cell voltage. Payload mass is given
by

y6 = x4mcell

wheremcell= 0.057 kg is the battery cell mass. Payload volume y5 is
given by

y5 = y6/ρcell

where ρcell= 3.8 kg/m3 is the battery cell density.

Propulsion Design Office. The propulsion design office
manages the propeller selection and corresponding power
demands based on the propeller diameter (x7, m), rotation rate (x8,
rpm), and number of blades (x9). Subsystem FRs include required
power (y7, W), mass (y8, kg), and generated thrust (y9, N).
We import propeller geometry into SUAVE and use CFD (blade

element theory) to calculate the thrust and torque (denoted by
Mp) generated by the propeller at cruising speed [55]. The CFD
model assumes a viscosity of 1.5 · 10−5 N-s/m2. The required
power is given by

y7 =Mpx8

as a function of the rotation rate. We assume propeller mass
increases linearly with the number of blades and the square of pro-
peller diameter.

y8 = 0.25x27x9

Airfoil Design Office. The airfoil design office manages the
geometry of the wing and tail surfaces based on the wing span
(x10, m), root chord length (x11, m), and tail scaling factor (x12). Sub-
system FRs include lift (y10, N), drag (y11, N), and mass (y12, kg).

OPENVSP wing geometry is imported to SUAVE [48] to calculate
the lift Cw

L (i) and drag coefficients Cw
D(i) using CFD analysis

(vortex lattice method) and estimate the platform or reference
area Swref (i) using wing panel methods for each aerodynamic
element i (i.e., wings and tail components). Lift and drag
forces are calculated as

y10 =
∑
i

1
2
ρairv

2Swref (i)C
w
L (i)

y11 =
∑
i

1
2
ρairv

2Swref (i)C
w
D(i)

where v= 22.22m/s is the cruising speed. Wing mass is
estimated as

y12 =
∑
i

1
2
ρairρskinρthkS

w
surf (i)

where Swsurf (i) is the wing airfoil surface area estimated from the
wing geometry in SUAVE, ρskin= 1700 kg/m3 is the mass density,
and ρthk= 3.175mm is the skin thickness.

System Office. The six system-level FRs include endurance
(y13, min), net lift (y14, L), net thrust (y15, N), net moment (y16,
N-m), net volume (y17, m

3), and cost (y18, USD).
Endurance (in minutes) is given by

y13 =
y4
y7

assuming that propulsion consumes all of the energy provided by
the payload. Net lift is given by

y14 = y10 − 9.81(y1 + y6 + y8 + y12)

as the difference between lift generated by all airfoil surfaces and
the weight force, ignoring fuselage lift as it is typically less than
5% of the total lift for the geometry considered in our model [47].
Net thrust is given by

y15 = y9 − (y2 + y11)

as the difference between propeller thrust and total drag, ignoring
drag induced by the interaction between the wing and fuselage.
The net moment, computed about the aircraft nose for simplicity,
is given by

y16 =Mw
pitch − 9.81x1 y6

x6
100

+ y12
x3
100

+ y1
1
2

( )

+ x1
x3
100

y10(1 + 0.2x12)

whereMw
pitch is the pitching moment generated by the wing and tails

obtained from CFD analysis. While calculating moment, we assume
that a tail with tail-scaling factor (x12) of 1 produces 20% of the
moment generated by the wings. The net volume is given by

y17 = y3 − y5

as the difference between available and required volume. Finally,
cost is given by

y18 = ρcost y1 + y6 + y8 + y12
( )

assuming ρcost= 1.0 USD/kg.
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Appendix C: Chat Messages
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Table 5 Chat message exchanges during first and last few
iterations in session 6

Time Iter. Sender: message

00:03 0 PP: payload please move the wings
00:34 1 PP: how much power do we have in hand?
00:45 1 PP: give me a number
00:58 1 PL: 970.9
01:22 1 PL: volume is 3.12 and mass is 11.87
01:24 1 PP: I need around 1500
01:32 1 AF: Hit ready for max updations
01:42 1 PL: i cant increase it
02:00 1 PP: a little more power and we are good
02:14 1 PL: our cost is almost right
02:45 1 FL: How can we affect the endurance?
02:55 1 PP: power increase would solve it

24:27 15 PL: done
24:44 15 PP: moment is increasing again
24:49 15 FL: I will increase volume a little bit more
24:50 15 PL: what’s wrong with moment
24:58 15 AF: idk
25:00 15 PP: payload is too low
25:05 15 PP: wing is big
25:30 15 PP: hit ready
25:49 16 PL: guys hit ready fast
25:53 16 PL: ?
26:02 16 PP: wow
26:08 16 PL: volume
26:30 16 PL: whoever changed moment pls increase it slightly
26:53 17 PL: guys hurry
26:58 17 AF: wowowowoowow

Note: AF, Airfoil; PP, propulsion; PL, payload; FL, fuselage.

Table 6 Chat message exchanges during first and last few
iterations in session 8

Time Iter. Sender: message

00:05 1 PP: ok so i think we need to have a basis, once you do it,
click on update, and then let everyone on this group know the
values

01:00 1 PP: fuselage drag now is 22.66
01:14 1 PP: Power is 3283
01:14 1 PL: what about wing drage
01:24 1 PL: 6.6
01:31 1 PP: who has energy
01:45 1 AF: energy charge 5.3
02:04 1 PL: payload 6.82
02:11 1 PP: 5.3?
02:14 1 PL: I decrease it a little

28:14 6 FL: now f drag 39.04
28:43 6 PL: payload location 75 and max
28:45 6 AF: wing drag 9
28:55 6 FL: thrust?
29:05 6 PP: 48 now
29:08 6 FL: match
29:09 6 FL: good
29:23 6 FL: lift?
29:33 6 AF: 610
29:57 6 AF: go for it, if you smaller it

Note: AF, airfoil; PP, propulsion; PL, payload; FL, fuselage.
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