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Abstract
The aim is to analyze the wave-induced vertical vibration of a non-prismatic mathematical hull in a stochastic sea, by normal 
mode analysis. The hull has been generated mathematically, to represent two distinct Indian merchant vessels: DS (Tanker) 
and SCIM (Containership). The body-plan, deck waterline, bow and stern profiles, have been modeled as semi-superellipses. 
These render non-uniform distributions of mass and stiffness over the ship-length. The energy-based Rayleigh–Ritz method 
has been used to analyze the idealized hull girder natural frequencies and modeshapes. The non-uniform beam modeshape 
is a weighted series sum of prismatic beam-free vibration modeshapes. The 2D added mass of superelliptic sections is for-
mulated, solving the radiation boundary value problem by the constant strength source distribution method. The hull girder 
is subject to the Pierson–Moskowitz sea spectrum in fully loaded condition. The diffraction force is formulated through the 
Khaskind’s relations. The flexural response of the girder is evaluated by the modal superposition method. The response spec-
tra have been generated for various sea states and ship speeds. The magnitudes of the maximum flexural/shear stress for each 
vessel are generated. The probability of shear/tensile failure is also estimated, giving insights into the hull structural design.

Keywords Non-uniform beam · Mathematical hull · Rayleigh–Ritz method · Ship springing · Response spectrum

List of symbols
x  Independent variable along length of the 

hull (m)
y(x, z)  Offset from hull centreline (m)
z  Independent variable along the depth of the 

hull (m)
t  Independent variable in time (s)
m(x)  Mass per unit length (kg/m)
I(x)  Second moment of cross-section area about 

horizontal neutral axis  (m4)
E  Modulus of elasticity (N/m)
LOA  Length overall of the hull (m)
L  Length between perpendiculars (m)
B  Moulded breadth (m)
D  Moulded depth (m)
T  Moulded draught (m)
a(x)  Local half-breadth (m)

b(x)  Local depth (m)
p(x)  Rectellipse power (–)
q(x)  Rectellipse power (–)
Δ  Displacement (ton)
Cb  Block coefficient (–)
�  Wavelength of ocean wave (m)
�e  Wave circular frequency (rad/s)
J  3D added mass/2D added mass (–)
a2D
j,33

(x)  2D added mass coefficient in heave due to 

heave associated with jth flexural mode (–)
z(x, t)  Vertical flexural displacement of beam (m)
Φj(x)  Jth non-uniform beam modeshape (–)
qj(t)  Jth principal coordinate (m/s)
ajk  Weight of the contribution of �k(x) to Φj(x) 

(–)
�j(x)  Jth uniform beam modeshape (–)
�jk  Generalized stiffness matrix in Rayleigh–

Ritz method
�jk  Generalized mass matrix in Rayleigh–Ritz 

method
A0  Material cross-section area of midship sec-

tion  (m2)
I0  Vertical second moment of inertia of the 

midship section  (m4)
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�  Spatial frequency of uniform beam vibra-
tion (1/m)

�  Material density (kg/m3)
Ψ3(x, z, t)  2D heave radiation potential  (m2/s)
b2D
33
(x)  2D radiation damping coefficient in heave 

due to heave associated with jth flexural 
mode (–)

GPQ(y, z;�, �)  2D constant strength Green’s function 
between field point P and source point Q

P(y, z)  Field point (–)
Q(�, �)  2D source point (–)
rPQ,n  Distance between P and nth source Q (m)
�j  Jth natural frequency of non-uniform beam 

(rad/s)
�j(x, z)  Jth auxiliary radiation potential (m)
�0(x, z, t)  2D incident wave potential  (m2/s)
�D(x, z, t)  Wave diffraction potential  (m2/s)
�  Wave amplitude (m)
k  Wave number of incident wave (1/m)
S(�e)  Sea spectrum ordinate
Ψ3(x, z, t)  2D radiation potential due to heave  (m2/s)
GMjk  Generalized mass in mode summation 

method
GAjk  Generalized added mass in mode summa-

tion method
GKjk  Generalized stiffness in mode summation 

method
M(x, t)  Bending moment (N-m)
V(x, t)  Shear force (N)
�xx(x, t)  Normal stress (N/m2)
�xx(x, t)  Shear stress (N/m2)
Tz  Average zero-up crossing period (s)
H1/3  Significant wave height (m)
�  Heading angle (rad)
�enc  Wave encounter frequency (rad/s)
V   Ship speed (m/s)
g  Acceleration due to gravity (m/s2)
N  Number of waves (–)
p(�amp)  Probability density of normal stress ampli-

tude (–)

1 Introduction

Investigation of hull vibration has become increasingly 
important due to marine structures becoming longer and 
larger. Global, steady-state, lightly damped, lower-fre-
quency-higher-amplitude vibrations of the ship hull girder, 
called springing, lead to global bending and shear stresses, 
and high-cycle fatigue. The hull girder’s natural period in a 
typical merchant ship is of the range 0.5–3 s. Typical ocean 
wave period is 8–20 s. However, the strongest wave-bending 
moments on the hull are caused when the wave length equals 

the ship length, which corresponds to a low frequency of 
ω ~ 0.5 rad/s. Also, forward speeds of the ship stretch the 
frequency domain on the higher frequency end (lowering 
the excitation period), causing the excitation frequency and 
natural frequency to approach each other, predisposing the 
hull girder to a resonant excitation by the ocean waves.

Troesch [1] studied the wave-induced hull vibrations 
both theoretically and experimentally, but the springing 
modeshape was highly simplified to a piece-wise rigid-
body mode. This work generated the normalized spring-
ing response spectrum for different Froude numbers of the 
Great Lakes bulk carrier model. Newman [2, 3] studied 
the bending of a slender barge, a vertical column, hinged 
barge, and the wave effects in a channel. The 2D boundary 
value problem in radiation–diffraction was set up, for both 
the rigid-body and flexural radiation potentials. However, 
the structure remained uniform. Jensen [4] detailed the study 
of short-term and long-term statistics of wave-induced non-
prismatic Timoshenko hull vibration bending moments and 
shear forces in stochastic seaways, using quadratic strip the-
ory. Jung et al. [5] used the quadratic strip theory to calcu-
late the non-linear radiation and diffraction forces, and then 
estimate vertical, horizontal, and torsional bending moments 
both analytically and numerically. Wu and Moan [6] studied 
the same both analytically and experimentally, inclusive of 
the dynamic effects like slamming. Kim et al. [7] numeri-
cally studied springing coupled with the rigid body modes 
with fully coupled CFD-FEM analysis. It used the higher-
order Rankine-panel method. This computationally expen-
sive analysis is limited to the time domain only. Zhu et al. [8] 
experimentally analyzed bending and torsional hull vibra-
tions using a backbone model. This is again an expensive 
and long process, bypassing the mathematical rigor.

In this work, the merchant ship hull is modeled math-
ematically with superellispes, replicating the standard body 
plan of a typical containership and a tanker. The vertical-
plane vibration frequencies and modeshapes are generated. 
The non-uniform beam modeshape is a series superposition 
of the uniform beam. Strip theory and Ritz method are used 
to generate the wet vibration natural frequency. The non-uni-
form girder is subjected to the deep water waves, represented 
in the frequency domain by the unidirectional PM spectrum. 
Linear potential theory is used, with the hydrodynamic 
pressure acting on the mean wetted surface area. Assuming 
strip theory, the 2D radiation potential for each station is 
solved by the Green’s function technique. It utilizes the body 
boundary condition of the velocity of the fluid at the surface 
of the body equals the structural velocity. Added mass dis-
tributions corresponding to all the modeshapes have been 
distinctly calculated. The diffraction potential is expressed 
in terms of the radiation potential, through the Khaskind’s 
relation, and the no-penetration body boundary condition of 
the excitation potential. Normal mode summation method is 
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used to generate the dynamic deflections in space and time, 
giving the tensile and shear stress in both the time domain 
and frequency domain. The response spectra is used to pre-
dict the extreme stress magnitudes than can occur at least 
once during a typical voyage duration.

2  Problem formulation

The merchant ship hull is modeled as a non-uniform 
free–free Euler–Bernoulli beam, with arbitrarily varying 
mass and stiffness distributions m(x) kg/m and EI(x) N/m2. 
The mass and stiffness distributions do not vary mathemati-
cally, unlike in [9]. Table 1 gives the main particulars of 
the two vessels (a) container ship and the (b) tanker. The 
body plans of the two vessels are given below in Fig. 1. The 
‘x’-coordinate is from the Aft perpendicular (AP) towards 
the Fore perpendicular (FP), the ‘y’-coordinate is transverse 
towards the starboard, and ‘z’ is vertically upwards. The 
bench-mark hulls are symmetric fore and aft.

The non-uniform hull is first modeled as a benchmark case 
of analytical definition, with the same principal dimensions. 
The container ship is benchmarked as a semi-ellipsoid, 

obeying the equation 
(

x

LOA∕2

)2

+
(

y

B∕2

)2

+
(

z

D

)2

= 1 , and the 

tanker is benchmarked as a semi-superellipsoid, obeying the 
equation 

(

x

LOA∕2

)4

+
(

y

B∕2

)4

+
(

z

D

)4

= 1 , where LOA is the 

overall length of the hull, B is the moulded breadth, and D is 
the moulded depth.

The container and tanker are modeled with rectelliptic 
sections in the body plan (Fig. 1), i.e., each section obeys the 
equation 

(

y

a(x)

)p(x)

+
(

z

b(x)

)q(x)

= 1.Here, a(x) is the local 

half-breadth and b(x) is the local depth of the station, both 
of which vary (piece-wise) superelliptically to generate a 
finer fore and a fuller stern. For the requisite bilge radius, we 
need p, q = 14 − 16 at the midship station. For the flared 
sections at the fore, we require p > 1, q < 1 . For the sta-
tions in the aft, p < 1, q > 1 are required to accommodate 
the stern tube. The steel mass distribution m(x) and stiffness 
EI(x) distribution of the four hulls are given below in Fig. 2. 
The cargo adds to the inertia without affecting the flexural 
rigidity of the hull girder, and hence, the loaded ship has a 
larger natural period.

Table 1  Main particulars of 
case-study and bench-mark 
vessels

Particulars Unit SCIM container DS tanker Semi-ellipsoid Semi-rectellipsoid

LOA m 262 249.98 262 249.98
L m 248 239 248 239
B m 32.2 44 32.2 44
D m 19.5 21.5 19.5 21.5
T m 13.2 15.1 19.5 21.5
L/B – 7.70 5.43 7.70 5.43
B/T – 2.44 2.91 2.44 2.91
Disp Δ ton 74,660 136,011
Cb – 0.708 0.856 0.523 0.835
λ = L m 248 239 248 239
ω rad/s 0.498 0.508 0.498 0.507
J factor – 0.8087 0.7224 0.8087 0.7224

-16.1 0 16.1
-19.5

0

-22 0 22
-21.5

0

(a) (b) 

Fig. 1  a Containership mathematical body plan, b tanker mathematical body plan
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3  Analysis methodology

The free vibration analysis is done to establish the dry natural 
frequencies and modeshapes. The details of the dry vibration 
analysis are shown in detail by the authors in Datta and Theki-
nen [10]. The modeshapes are used to generate the jth added 
mass distribution a2D

j,33
(x) . It is the 2D added mass (kg/m) per 

unit length in heave (subscript 3) due to heave (subscript 3). 
This leads to the wet natural frequencies, lower than their dry 
counterparts.

3.1  Free dry vibration

The out-of-plane flexural displacement of the non-uniform 
Euler–Bernoulli beam in the vertical plane z(x, t) obeys the 
governing differential equation (GDE)

Assuming small-amplitude displacements where linear 
superposition holds, the total displacement z(x, t) , can be 
assumed to be a superposition of the modal displacements

(1)m(x)
�2z(x, t)

�t2
+

�2

�x2

{

EI(x)
�2z(x, t)

�x2

}

= 0.

(2)z(x, t) =

∞
∑

j=1

Φj(x)qj(t),

where Φj(x) is the jth non-uniform beam modeshape and qj(t) 
is the jth principal coordinate. Here Φj(x) is the non-uniform 
beam mode, which is a weighted sum of the admissible func-
tions, i.e.,

where is the closed-form uniform beam modeshape with 
free–free end condition, and is the weight of the contribution 
of the kth uniform beam modeshape to the jth non-uniform 
beam modeshape Table 2. Here, acts as the jth admissible 
function to the series sum Eq. 3, and satisfies the boundary 
conditions, i.e., shear force and the bending moment are zero 
at the ends, i.e., 

Putting the generalized stiffness and mass, respectively, as

and applying the Ritz method as explained in [9], the 
equation

(3)Φj(x) =

∞
∑

k=1

ajk�k(x),

(4)
EI(0)Φ��

j
(0) = 0, EI(L)Φ��

j
(L) = 0,

EI(0)Φ���
j
(0) = 0, EI(L)Φ���

j
(L) = 0.

(5)�jk =
L∫
0

���
j
(x)���

k
(x)dx; �jk =

L∫
0

�j(x)�k(x)dx,

(6)
N
∑

k=1

aj
(

�jk − ��jk
)

= 0,

Fig. 2  Mass m(x) , flexural rigid-
ity EI(x) × 10−8 distribution
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Table 2  Weighted contribution 
and frequencies

j Container Tanker

aj1 aj2 aj3 aj4 �jND aj1 aj2 aj3 aj4 �jND

1 1 − 0.14 − 0.12 0.02 23.36 − 1 − 0.12 − 0.12 0.02 27.74
2 0.07 1 0.06 0.03 45.13 − 0.06 1 0.03 − 0.003 54.29
3 0.012 0.02 − 1 0.02 72.00 0.002 0.001 − 1 − 0.01 86.83
4 0.002 0.08 − 0.01 − 1 108.0 − 0.01 0.04 0.02 − 1 130.3
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is solved for ‘j’ number of equations. It aims to mini-
mize the frequency by assuming a certain modeshape. The 
natural frequency of beam vibration,�j = �2

√

EI0

�A0

 , where 
I0 is the vertical second moment of inertia of the midship 
section, and A0 is its area. The non-dimensional frequency 
�jND is obtained by diving the frequency by 

√

EI0

�L4A0

 . The 
non-uniform beam modes (Fig. 3a) are not orthogonal to 
each other (Table 3). The inner product of the non-uniform 
mode is:

A convergence study (Fig. 3b) has been done to ensure 
that enough �k(x) in Eq. (3) are used to satisfactorily define 

x=L�
x=0

Φj(x)Φk(x)dx =

∞
∑

l=1

all
2

if j = k

and

x=L�
x=0

Φj(x)Φk(x)dx =

∞
∑

l=1

ajl akl

if j ≠ k

Φj(x) . Here, the first five uniform modes are included to 
generate the non-uniform mode.

3.2  Free wet vibration

Obeying Newton’s second law in the vertical direction, the 
GDE of free vibration in fluid is given as:

The RHS of Eq. 7 is the radiation force at that section. 
When the ship vibrates in its vertical mode, each individual 
station heaves with respect to each other, according to the 
shape of the beam modes. Linear strip theory is assumed, with 
each vertical section hydrodynamically independent of each 
other. The total 2D heave radiation potential Ψ3(x, z, t) associ-
ated with the individual 2D boundary value problem in heave, 

(7)
m(x)

𝜕2z(x, t)

𝜕t2
+

𝜕2

𝜕x2

{

EI(x)
𝜕2z(x, t)

𝜕x2

}

= ∫ −𝜌
𝜕Ψ3(x, y, z, t)

𝜕t
k̂ ⋅ n̂|dl| .
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L L

LL
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Fig. 3  a Fundamental modeshapes along length of the hull L. b Convergence of first modeshape along length of the hull L

Table 3  Inner product of non-
uniform modeshapes

k Container Tanker

1 2 3 4 1 2 3 4

1 56.33 − 4.81 7.16 − 1.65 52.97 − 4.77 6.54 − 1.27
2 − 4.81 51.98 − 1.86 2.75 − 4.77 58.55 − 1.99 2.48
3 7.16 − 1.86 59.12 − 0.70 6.54 − 1.99 64.91 − 0.49
4 − 1.65 2.75 − 0.70 72.62 − 1.27 2.48 − 0.49 68.34
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for each station, generates the added mass a2D
33
(x) and damping 

coefficients b2D
33
(x). The high-frequency vibration generates a 

rigid-lid condition, without any radiated waves, such that the 
wave damping coefficient b2D

33
(x) → 0. It becomes a double-

body problem, with the body behaving as though oscillating 
in an infinite fluid. The radiation potential can be solved by 
the 2D Green’s function technique, by distributing constant-
strength sources on the wetted surface and its reflection. The 
2D Green’s function is:

where P(y, z) is the field-point and Q(�, �) is the source-point, 
and where rPQ,n is the distance between P and nth source Q . 
N sources are distributed on the wetted perimeter of that 
station, and there are another N image sources due to reflec-
tion. The Ψ3(x, z, t) on the surface of the body, at a given x
-location, is

The body boundary condition (BC) of no-penetration, i.e., 
the normal velocity is continuous, is expressed as

(8)GPQ(y, z;�, �) ≡
2N
∑

n=1

1

2�
ln
(

rPQ,n
)

,

(9)

1

2
Ψ

3
(y, z, t) = ∫

[

Ψ
3(𝜉, 𝜂, t)

𝜕GPQ(y, z;𝜉, 𝜂)

𝜕n̂

−GPQ(y, z;𝜉, 𝜂)
𝜕Ψ

3(𝜉, 𝜂, t)

𝜕n̂

]

n̂|dl|.

(10)

𝜕Ψ
3
(y, z, t)

𝜕n̂
=

∞
∑

j=1

Φj(x)q̇j(t)k̂ ⋅ n̂ ⇒

∞
∑

j=1

𝜕Ψj3(y, z, t)

𝜕n̂

=

∞
∑

j=1

Φj(x)q̇j(t)k̂ ⋅ n̂.

Here, Ψj3(y, z, t) is the jth radiation potential satisfying the 
GDE ∇2Ψ3,j(y, z, t) = 0. Defining Ψj3(y, z, t) per unit jth body 
velocity Φj(x)q̇j(t) , i.e.,

we get �j(x, z) which is called the auxiliary radiation 
potential. Thus, Eq. 10 becomes

The jth body BC becomes 𝜕𝜓j3

𝜕n̂
= k̂ ⋅ n̂ , which is time-

independent. Thus the radiation force in Eq. (7) is expressed 
as

This term is a vertical force in phase with the structural 
acceleration, which can be taken on the LHS of (Eq. 7) to 
represent the added mass of the jth mode. The J factor has 
been included, i.e., the ratio of the 3D fluid kinetic energy to 
the 2D fluid kinetic energy. It accounts for the three-dimen-
sional flow around the ends of the hull girder, and depends 
on the length-to-beam (L/B) ratio.

Figure 4 shows the sectional radiation force per unit 
structural acceleration (Eq. 12) for the four hulls: idealized 
containership, idealized tanker, ellipsoid, and rectellipsoid. 
The distribution approximately follows the fundamental 
modeshape of the hull girder. It also depends on the section 
shape and perimeter, and hence goes to zero at the two ends. 
The tanker has a higher sectional radiation force than the 
containership due to a larger sectional area.

Figure 5 shows the non-dimensional frequency parameter 
�jND = �j∕

√

EI0

�L4A0

 , both dry and wet, for the four hulls. For 

(11)Ψ3,j(x, z, t) ≡ 𝜓j(x, z)Φj(x)q̇j(t)

(12)
∞
∑

j=1

𝜕𝜓j(x, z)

𝜕n̂
Φj(x)q̇j(t) =

∞
∑

j=1

Φj(x)q̇j(t)k̂ ⋅ n̂.

(13)

∫ −𝜌i𝜔Ψ3(x, y, z, t)k̂ ⋅ n̂|dl| =

∞
∑

j=1

∫ −𝜌𝜓j(x, z)Φj(x)q̈j(t)
𝜕𝜓3,j(x, z)

𝜕n̂
.

Fig. 4  Added mass distribution 
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a uniform free–free beam, the fundamental frequency 
parameter (�L)2 is (4.73)2 = 22.37 ; the second frequency 
parameter (�L)2 is (7.85)2 = 61.62 ; the third frequency 
parameter (�L)2 is (10.99)2 = 120.9 ; and the fourth fre-
quency parameter (�L)2 is (14.14)2 = 199.7. The dry �jND of 
the non-uniform beam is less than that of the uniform beam 
since the frequency is non-dimensionalized by a larger 
parameter

√

EI0

�L4A0

 , where I0 and A0 are measured at the mid-
ship and hence the largest in magnitude compared to those 
at other sections.

Table 4 shows the %age drop in the natural frequency 
due to inclusion of fluid inertia, which reduces with increas-
ing mode. The fundamental mode shows the highest drop 
(~ 60%) in the frequency. The fourth mode has a drop of 
only ~ 33%. This is due to increased opposite antinodes for 
higher beam wave numbers, which partially cancel out the 
fluid inertia.

3.3  Forced vibration

The non-uniform beam is subject to the Pierson–Moskowitz 
spectrum. The 2D incident wave potential in deep water is 
�0(x, z, t) ≡ �g

�
ekzei(kx−�et) ; where, �e is the excitation fre-

quency, � is the amplitude, and k is the wave number of the 
external waves. If the full-developed zero-mean, stationary 
and ergodic sea spectrum is expressed as S(�e) , the ampli-

tude is �
(

�e

)

=

√

2
�+d�∕2∫
�−d�∕2

S
(

�e

)

d�e . The deep water dis-

persion relation is �2
e
= gk , which gives the wave number 

‘k’ . The nth moment of the sea spectrum is given as 

mn =
∞∫
0

�n
e
S
(

�e

)

d�. The total excitation potential is 

�excitation(x, z, t) = �0(x, z, t) + �D(x, z, t) , i.e., the incident 
wave potential and the diffraction potential.

The linear hydrodynamic force, including the diffraction 
force, is expressed as

To satisfy the body boundary condition of “no-penetra-
tion” in a diffraction problem (when the body is supposed 
to be stationary), 𝜕𝜓0

𝜕n̂
(x, z, t) = −

𝜕𝜓D

𝜕n̂
(x, z, t) holds true. The 

total excitation force is :

The diffraction potential can be expressed in terms of 
the radiation potential Ψ3(x, z, t).The jth excitation force is:

by the Haskind’s relation, using the Green’s second identity, 
as detailed in [11]. The Haskind’s relation gives the total 
wave excitation force, i.e., the incident and diffraction forces, 
in terms of the incident and radiation potentials, as follows :

(14)F(x, z, t) ≡ � −𝜌
𝜕Ψ0 + ΨD]

𝜕t
k̂ ⋅ n̂|dl|.

(15)
F(x, t) ≡ � −𝜌i𝜔

e
[Ψ

0
+ Ψ

D
] k̂ ⋅ n̂|dl|

= � −𝜌i𝜔
e
[Ψ

0
+ Ψ

D
]
𝜕𝜓j3

𝜕n̂
|dl|.

(16)Fj(x, z, t) = ∫ −𝜌i𝜔e

{

Ψ0

𝜕Ψ3,j

𝜕n̂
− Ψ3,j

𝜕Ψ0

𝜕n̂

}

|dl|,

Fig. 5  Dry vs. wet non-D 
frequency �jND = �j∕

√

EI
0

�L4A
0

for the idealized hulls and their 
fore-aft symmetric counterparts
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Table 4  %Age drop in wet frequency from the dry frequency 
(

�dry−�wet

�dry

× 100
)

Mode Ellipsoid Rectellipsoid Container Tanker

1 56.8 63.2 61.6 61.5
2 51.9 48.8 49.5 49.8
3 37.9 39.1 37.2 38.8
4 34.3 33.2 33.8 34.2
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The first part is the Froude–Krylov force and the second 
part is the diffraction force. The forced wet vibration GDE 
of motion of non-uniform beam is given as

The RHS has the first term as the radiation force, and 
the second term as the excitation force. Figure 6 shows the 
excitation force as a function of space and time, for sea state 
7 (Beaufort scale).

3.3.1  Mode superposition method

Equation (18) is solved by the mode-summation method, by 
first generating the system of modal governing differential 
equations. The generalized mass GMjk , generalized added 
mass GAjk , generalized stiffness ��jk matrices are all non-
diagonal, yet symmetric.

(17)

F
excitation(x, z;t) = − �∬

S
B

{

��
0

�t
+

��D

�t

}

dS

= �∬
S
B

{

�
0

��
3

�n
− �

3

��
0

�n

}

dS.

(18)

m(x)
𝜕2z(x, t)

𝜕t2
+

𝜕2

𝜕x2

{

EI(x)
𝜕2z(x, t)

𝜕x2

}

= ∫ −𝜌i𝜔eΨ3(x, y, z, t)k̂ ⋅ n̂|dl|

+ ∫ −𝜌i𝜔e

[

Ψ0

𝜕Ψ3

𝜕n̂
− Ψ3

𝜕Ψ0

𝜕n̂

]

|dl| .

GMjk = ∫
L

Φk(x)m(x)Φj(x)dx;

GAjk = ∫
L

−𝜌𝜓j(x, z)Φk(x)Φj(x)
𝜕𝜓

3,j(x, z)

𝜕n̂
dx,

(19)GKjk = ∫
L

EI(x)Φ
��

j
(x)Φ

��

k
(x)dx.
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Fig. 6  Excitation force, sea state 7 (Wind speed = 14–17  m/s, 
H

1∕3 = 4–5.5 m)

The generalized force is given as:

Thus the modal equations become

Equation (21) is time-integrated by the stable Euler’s 
implicit method. It generates the principal coordinates 
qj(t) , which are multiplied by the corresponding mode-
shapes Φj(x) to generate the flexural deflection z(x, t) . The 
bending moment is generated by the moment–curvature 
relation as:

and the tensile stress at deck/keel is the bending moment 
divided by the section modulus, i.e.,

where Zdeck/keel is the distance of the deck/keel from the hori-
zontal neutral axis. The shear force is evaluated as:

The shear stress at a given station is

where Q(z) is the first moment of area beyond ‘z’ away from 
the horizontal NA, and b(z) is the local breadth.

Figure 7 shows the wave-induced hull girder vertical 
bending moment for sea state 7. The bending moment is 
maximum amid ships and zero at the ends. It shows the 
superposition due to several wave frequencies, especially 
whose wavelengths are close to the length of the hull. This 
is the springing behavior, which causes alternate compres-
sive and tensile stresses on the deck and the keel plates 
of the hull. The shear force is zero amidships, and at the 
ends; while it is maximum at x ∼ L∕4 , 3L∕4 . The shear 
stress is maximum at the neutral axis and zero at the deck/
keel plates.

(20)

��
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L
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{

∫ −𝜌i𝜔e
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Ψ
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𝜕Ψ
3
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− Ψ

3

𝜕Ψ
0

𝜕n̂

}

|dl|

}

dx

= GFk(t)e
−i𝜔et .

(21)

[[GM] + [GA]]
{

q̈k(t)
}

+ [GK]
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}

= ��
�(t) ⇒
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qk(t)
}

=

{

GFk(t)e
−i𝜔

e
t
}

[

[GK] − 𝜔2

e
([GM] + [GA])

] (21)

(22)M(x, t) =

∞
∑

j=1

EI(x)Φ��
j
(x)qj(t)

(23)�xx(x, t) =

∑∞

j=1
EI(x)Φ��

j
(x)qj(t)

I(x)
⋅ Zdeck/keel,

(24)V(x, t) =

∞
∑

j=1

EI(x)Φ���
j
(x)qj(t).

(25)�zx(x, z, t) =
V(x, t)Q(z)

I(x)b(z)
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3.3.2  Frequency domain analysis

The excitation force is a function of the excitation frequency 
�e , and so is the response z(x, t) . The maximum deflection, 
bending moment M(x, t) , and shear force V(x, t) , correspond-
ing to each frequency is plotted as function of �e . The ten-
sile and the shear stress spectra follow. The area under each 
spectrum gives the RMS value.

The Rayleigh probability distribution of the stress ampli-
tudes is generated by

Given the sea state, the number of waves encountered, 
N, is known from the average zero-up crossing period. 
The most probable largest stress amplitude is given by 
�1∕N = �rms

√

2ln(N) . This is repeated for the shear stress.

4  Results

The head-sea condition stretches the sea spectrum into 
higher frequencies, and changes the time-scale of the exci-
tation. Following sea compresses the spectrum to very low 
frequencies, where springing is extremely unlikely. The 
apparent encounter frequency (using the deep water disper-
sion relation) is expressed as :

where V  is the forward speed of the ship and � is the heading 
angle, i.e., the angle between the ship velocity vector and the 
wave propagation direction. For head sea, the heading angle 
is � = 180◦ , i.e., encounter frequency is �enc = �e + �2

e
V∕g . 

The ship apparently experiences higher frequencies. For sea 

(26)p
(

�amp

)

=
2�amp

�2
rms

exp

{

−
�2
amp

�2
rms

}

.

(27)�enc = �e −
�2
e
V

g
cos�,

state 7, the average wind speed is 15.5 m/sec, the spectral 
speak frequency is �peak =

0.877g

Uwind

= 0.56
rad

s
. For a forward 

speed of 16 knots (= 16 × 0.5144 = 8.23 m/s), the apparent 
peak frequency becomes 0.81 rad/s. For a forward speed of 
25 knots (= 16 × 0.5144 = 12.86 m/s), the apparent peak fre-
quency becomes 0.96 rad/s.

The sea spectrum ordinate S(�enc) is stretched to the 
apparent higher frequencies, but is reduced in magnitude. 
The total energy content of the sea remains constant, i.e., 
∞∫
0

S(�e)d�e =
∞∫
0

S(�enc)d�enc. . Thus the encounter sea spec-

trum ordinate is expressed as

Indian merchant ships use steel grade IS-2062(A), whose 
yield tensile stress �yield = 250 MPa and yield shear stress 
�yield = 125 MPa. The two hulls have been subjected to ran-
dom wave loads at sea states 3 and 7. The sea is stationary, 
ergodic, and has a zero mean (i.e., no swell). Assuming a 3-h 
period of a given sea state, duration = 3 × 60 × 60 = 10800s. 
Thus N =

duration

Tz
 , where Tz = 2�

√

m0

m2

 is the average zero-up 

crossing period.

• For sea-state 3, wind-speed = 2.4 m/s, H1/3 = 0.4085 m, 
Tz = 6.317 s, N = 1710.

• For sea-state 7, wind-speed = 15.5 m/s, H1/3 = 5.088 m, 
Tz = 9.524 s, N = 1134.

All calculations in Sect. 3 are repeated. The springing 
added mass is speed-independent [1]. The response spec-
trum at sea-state 7, in terms of z(x, t) , �xx(x, t) , and �zx(x, t) 
have been plotted in Fig. 8a–c, respectively, for both hulls 
and two speeds, against the circular wave frequency �e . The 
container has a design speed of 25 knots, and the tanker has 
a design speed as 16 knots. The maximum and the RMS 
of these quantities have been tabulated at three sea states 
(Table 5), and their most probable largest amplitudes have 
also been estimated.

As sea state increases, the maximum deflection and 
stresses increase in magnitude; and their spectra spread 
over a larger range of excitation frequencies. Higher sea 
states make the sea spectrum heavier on the lower frequen-
cies. Forward speeds stretch the response spectra to higher 
frequencies. The containership is seen to suffer larger 
stresses than the tanker. The greater mass and added mass 
of the tanker makes it tender, leading to lower response 
amplitudes and dynamic stress levels. The containership 
is more prone to springing excitation, especially at higher 
forward speeds, where the maximum stress spectral ordinate 

(28)S(�enc) =
S(�e)
(

d�enc

d�e

) =
S(�e)

(

1 + 2�eV∕g
) .
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becomes several times of that at zero forward speed. The 
wavelength (equaling the ship length) which causes the 
maximum bending moments; corresponds to a wave fre-
quency of ~ 0.5 rad/s, which corresponds to a non-negligible 
wave amplitude, thereby inducing springing. The very low 
structural damping of steel causes this flexural behavior to 
reach large amplitudes at the resonant excitation frequen-
cies. A mere structural damping of < 5% causes the dynamic 
amplitudes to be at least ten times of the static response.

5  Discussion and conclusions

A non-uniform hull girder is mathematically generated, 
with a non-analytical (arbitrary) variation of the sectional 
mass and flexural rigidity. It is modeled as non-uniform 

Euler–Bernoulli beam for free and forced wet vibration 
analysis. The free vibration frequencies and modeshapes 
have been generated using the energy-based Rayleigh–Ritz 
method, by superposition of the closed-form (analytical) 
uniform beam modeshapes. About 3–4 uniform beam 
modeshapes need to be superposed, to generate the con-
vergent non-uniform modeshape. This eases the process of 
generation of non-uniform frequency and modeshape, as 
compared to FEA. The lower the order of the rectellipsoid 
in the benchmark cases, the more the non-uniform mode-
shape deviates from the uniform beam modeshape. A very 
high order of the rectellipsoid generates almost a cuboid, 
which behaves like a uniform beam. The ease of modelling 
a very wide range of section shapes of merchant vessels 
using only four section parameters ( a(x), b(x), p(x), q(x) ), 
show the versatility of this closed-form mathematical 

(a) (b) (c)
0 1 2 30

1

2

3

4

5

6 x 10-3

0 1 2 30

1

2

3

4

5

6

7

8 x 106

0 1 2 30

1

2

3

4

5

6

x 105

Container 
V=0,25 kn

Tanker 
V=0,16 kn

Container 
V=0,25 kn

Tanker 
V=0,16 kn

Container 
V=0,25 kn

Tanker 
V=0,16 kn

Deflection Tensile Stress Shear Stress

Frequency Frequency Frequency

Fig. 8  a Flexural response spectrum. b Tensile stress spectrum. c Shear stress spectrum (SS7)

Table 5  Response 
characteristics of two hulls in 
different sea states (SS) with 
zero and non-zero forward 
speeds

Sea state Container ship V = 0 Tanker V = 0 Container ship = 25 
knots

Tanker = 16 knots

3 7 7 3 7 7

Max z (m) 3.22 × 10− 6 0.00087 0.00025 14 × 10− 6 0.0056 0.00054
Max �xx (Pa) 7.47 × 103 1.25 × 106 4.47 × 105 3.4 × 104 8.03 × 106 9.61 × 106

Max �zx (Pa) 5.6 × 102 6.91 × 104 3.65 × 104 5.48 × 103 6.62 × 105 7.87 × 104

z2
rms

  (m2) 2.8 × 10− 6 0.00028 0.000089 2.3 × 10− 5 0.0023 0.0002
�2
rms

  (Pa2) 6.45 × 103 4.57 × 105 1.43 × 105 6.81 × 104 3.94 × 106 3.65 × 105

�2
rms

  (Pa2) 4.94 × 102 3.14 × 104 1.18 × 104 8.82 × 103 3.04 × 105 3.00 × 104

�1∕N (3 h) (Pa) 204.18 1663.60 936.51 663.78 4906.72 1493.13
�1∕N (3 h) (Pa) 56.54 438.19 268.28 238.80 1361.92 428.14
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approach. The subsequent hull form can be conveniently 
analyzed. Closed-form analytical expressions exist for 
structural area, neutral axis height, second moment of area 
in horizontal and vertical bending, polar moment of inertia 
etc. This also eases the evaluation of sectional added mass 
and damping coefficients, bypassing the computationally 
expensive source distribution technique. This becomes 
handy for preliminary estimation of hull frequencies. Stor-
age of shapes and underwater geometry is much easier, 
because we require only four parameters to store a curve. 
Such reasonably accurate representations of underwater 
geometry help to conveniently model the arbitrary mass 
and stiffness distributions over the length of the hull. The 
import and export of the sections from software to another 
requires less memory and time.

Utilizing the strip theory, the 2D Green’s function tech-
nique has been used to generate the radiation potential. The 
use of the auxiliary radiation potential, which is only a func-
tion of space, shows the total radiation force to be in phase 
with flexural acceleration of the body. This leads to the wet 
natural frequencies of the hull girder. The high-frequency 
limit of the free-surface boundary condition leads to neg-
ligible radiation damping. The frequency reduction due to 
inclusion of fluid inertia is the highest for the fundamental 
mode, and decreases consistently for higher modes.

The wave excitation is modeled as fully developed sea, 
obeying the Pierson–Moskowitz spectrum. The Froude–Kry-
lov hydrodynamic pressure is modified due to the presence 
of the vessel, giving rise to a diffraction potential. Using 
the Haskind’s relations, the radiation–diffraction problem 
has been established. Modal superposition method is used 
to generate the flexural response in the frequency domain. 
The individual responses to sinusoidal wave excitation can 
be superposed assuming linear wave theory and linear struc-
tural behavior.

The excitation spectrum for vertical vibration can be 
generated by integrating the excitation hydrodynamic pres-
sure over the wetted surface area of the hull in the vertical 
direction. This spectrum depends on the sea state and the 

encounter frequency. Each vessel has a frequency-dependent 
transfer function, which depends on its own properties like 
mass, stiffness, radiation force coefficients, and structural 
damping. The product of the excitation spectrum and the 
transfer function gives the response spectrum, which is nar-
row-banded. Short-term extreme responses are predicted 
from the response spectra of the two hulls at two different 
forward speeds. Structural design recommendations can be 
drawn from the response spectra. Given a safety factor of 3, 
the extreme stress level should not exceed 1/3rd the magni-
tude of the yield stress.
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