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A B S T R A C T

The coupled horizontal-torsional-warping vibration of a thin-walled open-section 7800 TEU container ship bare-
hull, modelled as a non-uniform girder, is analysed by the efficient energy-based Rayleigh-Ritz method, in order
to generate the dry asymmetric vibration frequencies. Since the centre of gravity is within the hull and the shear
centre is below the keel, the horizontal and torsional modes of vibration are highly coupled. An open section is
also prone to warping. In a novel attempt, the bare-hull geometry is generated mathematically, using section-
wise closed-form semi super-ellipses (Lame’s curves). The main dimensions, weight distributions, and fineness
ratios are preserved, and closed-form expressions of sectional properties become available in the process. The
hull has arbitrarily (non-mathematically) varying mass, bending stiffness, warping stiffness, and shear stiffness
distributions along the length. The non-uniform beam modeshape in horizontal/torsional vibration is assumed to
be a weighted sum of the uniform beam horizontal/torsional modeshapes. Several benchmark cases of simpler
geometry have been analysed first, for both torsion-warping vibration, and coupled horizontal-torsional-warping
vibration. Pontoon approximation of the containership has been analysed and validated. Subsequently, the
coupled dry vibration frequencies are obtained for the open deck non-uniform girder, and compared with
published results.

1. Introduction

Ocean going cargo vessels, by virtue of being large and long, are
subject to significant dynamic stresses due to environmental forces and
internal machinery. The investigation of the vibratory stresses is crucial
for the safe design of marine structures. Global, steady-state, lightly
damped, lower frequency-higher amplitude vibration of the ship hull
girder is called springing, which may result in global shear stresses and
fatigue. The fundamental frequency of hull girder vibration should be
avoided at all encounter speeds. Thus, the estimation of the natural
frequencies forms an integral part of the structural design.

Foropen-section container ships, a major structural design concern
is torsional flexure (including warping), which leads to high shear
stresses, especially in oblique seas. In modern times, large container
ships may go up to 400m in length and 60m in beam. The hatch
opening is as large as the beam itself, which adversely affects the tor-
sional rigidity of the vessel. Open-section container ships are subjected
to torsional moments in the quartering sea conditions. With the vessel
heading obliquely into the waves, there are opposing exciting moments
fore and aft of the vessel, leading to torsion-warping. There are large

horizontal bending moments in quartering and beam seas, leading to
horizontal springing. Containerships are open-section hull-forms,
causing the shear centre to lie much beneath its keel line. Additionally,
stacking of containers above the deck causes the centre of gravity to rise
in the loaded condition. This results in a large offset between the centre
of gravity and the shear centre, called ‘eccentricity’, which causes sig-
nificant coupling between the horizontal and torsional vibration modes.

The premise of this work is as follows:

• The containership hull is open-section, with a single plane of sym-
metry (port and starboard). The large gap between the centre of
gravity and shear centre causes a strong coupling between the
horizontal and torsional modes of vibration.
• The thin-walled open-section hull undergoes warping in the coupled
horizontal-torsional vibration. As shown by Li et al. [1], the length-
to-depth must be at least 70 in order to ignore warping. In our case
study here (7800TEU container, Senjanović 2009), the length-to-
breadth ratio is 7.80, and the length-to-depth ratio is 13.6. For this
slenderness ratio, warping may lead to a 2–2.5 times increase in the
pure-torsional frequencies; and thus cannot be ignored.
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• The sectional mass and stiffness properties vary arbitrarily along the
length : there is no mathematical function to define them. Thus,
closed-form analytical solutions to vibration energies, frequencies,
and modeshapes are not possible.
• The ends are free, i.e. free to translate, rotate, twist, warp. The shear
force and the bending moment are zero at the ends. The total torque
(twisting+warping) is zero at the free end, and the warping bi-
moment is also zero.
• The dry frequencies of torsional vibration coupled with horizontal
vibration, including warping, are to be calculated. Uncoupled modes
over-predict the frequencies, falsely assuring low chances of re-
sonance with waves.
• The coupled horizontal-torsional-warping non-uniform modeshapes
are obtained through this work, and they act as inputs in the mode-
superposition method for the hydroelastic analysis of the vessel
under wave-induced flexure.

1.1. Literature review : torsional vibration of uniform and non-uniform
beams

Pouyet and Lataillade [2] studied the torsional vibration of non-
uniform shafts ignoring warping. The work was limited to mathematical
variations of the cross-section, leading to closed-form solutions of the
torsional modeshapes and frequencies. Dokumaci [3] introduced a
method of frequency-search to study coupled torsion-horizontal vibra-
tion, ignoring warping. Rao and Mirza [4] studied free torsional vi-
bration, including effects of warping, through Galerkin’s finite element
method : however the analysis was limited to linearly tapered cantilever
beams. The shape functions were third-degree polynomials for the
angle of twist, and the Eigen vectors and torsional modeshapes were not
investigated. Bishop et al. [5] extended the method introduced by
Dokumaci [3] to study coupled torsion-warping-horizontal vibration for
uniform (prismatic) beams by the frequency search method. It estab-
lished the huge errors in torsional frequencies if warping was excluded,
even in closed-section uniform beams. Li et al [1] studies the torsion-
warping vibration of uniform I-section beams, uncoupled from hor-
izontal vibrations. Also, the free-edge conditions used were approx-
imate and did not account for the total twisting torque including
warping to be zero at the ends. Eisenberger [6] studied torsional vi-
bration of tapered beams including the effects of warping, with poly-
nomial variation of sectional properties, approximate boundary condi-
tions, and the modeshapes assumed as an infinite power series.
However, the methodology still required solution for a large number of
simultaneous equations. Sapountzakis [7] studied the static torsion of
various non-uniform cross-sections with boundary element method.
This work was continued in Sapountzakis and Mokos [8].

1.2. Literature review : anti-symmetric hull girder vibration

Bishop and Price [9], in their pioneering book on ship hydro-
elasticity, discuss the basic analysis methodology of anti-symmetric
(horizontal and torsional) vibration of ships, including shear deforma-
tion and warping. However, four decades ago, no real-time results were
available for the dry and wet natural frequencies of coupled horizontal-
torsional warping vibration of ships. Pedersen [10] used 1D FEA model
to study the torsion-warping vibrations of a prismatic thin-walled hull.
Senjanovic [11–15] has done an extensive and comprehensive analysis
of the torsion-warping-longitudinal coupled vibration of open-section
thin-walled ship-like girders. However, Finite Element Method was the
major methodology of analysis and admissible function for uniform
beams. Senjanović and Ćatipović [13] used the energy-based method to
solve the differential equations for the coupled horizontal-torsional-
warping vibration, but the girder was uniform (prismatic) and torsion-
warping boundary conditions were simplified. Also, separate formula-
tions were done for vertical/torsional modeshapes symmetric and anti-
symmetric about midships, increasing theoretical calculations.

1.3. Overview of this work

For global vibration analysis, the hull girder is modelled as a non-
uniform Euler-Bernoulli beam. The sectional properties (mass and
stiffness distributions along the length of the hull) have no mathema-
tical/analytical expressions, which could have led to closed-form ex-
pressions for the potential and kinetic energies of the beam. At each
section (station), the sectional shape (visible in the body plan) again has
no mathematical expression, which could have led to closed-form ex-
pressions for sectional mass and stiffness. Now suppose there was a
closed-form expression of a section shape, the accuracy of the sectional
properties thus calculated would be highly enhanced. However, the hull
section resembles none of the known geometric shapes known, e.g.
circle, ellipse, parabola, polygon, etc. A non-mathematical function
requires numerical integration. This work overcomes the disadvantage
of lack of mathematical geometry definitions : the concept of rectellipse
(rectangle+ ellipse, i.e. a shape in between a rectangle and an ellipse),
a superset of Lame’s curves, is very versatile in replicating most of the
hull section shapes. Using them to generate the ship hull body-plan
gives closed-form expressions for sectional properties. This leads to an
accurate length-wise mass and stiffness distributions, and improves the
accuracy of the energy calculations, leading to more reliable estimates
of hull girder frequencies.

In the present work, a merchant ship hull (7800TEU containership)
is modelled mathematically with semi-superellipses, replicating a major
part of the standard body plan. The mathematical and NURBS body
plan are blended together to form a hybrid body plan. The main

Nomenclature

E Modulus of elasticity of the material
G Shear modulus of the material

Density of the material
x Independent space variable along the length of the vessel

(Positive from AP to FP)
y x z( , ) Vessel offset along the breadth of the vessel (Positive to-

wards starboard)
z Independent space variable along the depth of the vessel

(Positive upwards)
t Independent time variable

x y( , ) Warping function
x t( , ) Angle of twist of the non-uniform cross section in torsional

vibration
x t( , ) Angle of twist of the uniform cross section in torsional

vibration
Z x t( , )H Flexural displacement in horizontal vibration
Z x t( , )V Vertical vibratory displacement

x( )j jth non-uniform torsional mode
x( )j jth uniform beam torsional mode
x( )j jth non-uniform beam flexural mode
x( )j jth uniform beam flexural mode

I x( )p Polar moment of area of cross section
I x( )w Warping constant
J x( ) Torsion constant
c x( ) Distance between centre of gravity and shear centre
I x( )bv Second moment of area about horizontal neutral axis
I x( )bh Second moment of area about vertical neutral axis

j Frequency parameter of the jth uniform beam modeshape
T Total kinetic energy of the beam
U Total potential energy of the beam
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dimensions and fineness ratios (block coefficient Cb, prismatic coeffi-
cient Cp, midship section area coefficient CM , water plane-area coeffi-
cient Cwp) of the ship are retained in the process. The closed-form ex-
pressions for the sectional properties are easily calculated, leading
superior estimates of the potential and kinetic energies. First, the ver-
tical-plane vibration frequencies are generated by the Rayleigh-Ritz
method, using the admissible function as a series summation of the
uniform beam modeshapes (admissible functions); as detailed by Datta
and Thekinen [16]. The same energy-based approach is used to analyse
horizontal/torsional vibration of the non-uniform beam, including
warping. The coupled horizontal/torsional/warping frequencies are
generated for the open deck non-uniform girder. Comparative studies
are made by Finite Element Method to justify the validity of the present
method. The novelty of the work lies in the following:

1 Use of rect-ellipses to model and analyse a mathematical hull. In pre-
vious works, structural dynamics and hydrodynamic added mass and
damping are calculated only for Non-Uniform Rational B-Spline
(NURBS) surfaces or Lewis sections. In the present work, the same is
achieved for a 3D body with semi-super-elliptic sections (see Section 2).

2 Use of Rayleigh-Ritz method to analyse the natural frequencies of vi-
bration of a hull girder with non-prismatic cross-section. In most of the
previous published work, hull vibration has been studied using Finite
Element Analysis (FEA). In present study the results are obtained by
the Rayleigh-Ritz (ReR) method are then verified by comparative
studies using FEA. The computational supremacy of the Rayleigh-Ritz
method with reasonable accuracy over FEA is justified.

3 Use of accurate torsional-warping boundary conditions. For a free-free
hull girder, the boundary conditions have been modelled fully, which
have been approximated in earlier literature. This leads to accurate
uniform torsion-warping modeshapes, which are used in the Rayleigh-
Ritz method to establish the non-prismatic hull girder vibration.

2. Superellipse

The range of typical ship sections that can be generated by a semi-
rectellipse, and its application to model hull sections has been detailed
in this section (previously shown in Datta and Thekinen [17]). A rect-
ellipse follows the equation

+ =y x z
a x

z
b x

( , )
( ) ( )

1
p x q x( ) ( )

(1)

Here, z is the waterline measured from the main deck, and y x z( , ) is the
hull offset measured from the centreline, which is a function of two
independent variables, i.e. (i) the station x and (ii) the waterline z . A
semi-rectellipse requires four positive parameters to define itself, viz.
a x( ), b x( ), p x( ), q x( ). The parameters a x( ) and b x( ) are the semi-major
and semi-minor axes of the rectellipses, respectively. The powers p x( )
and q x( ) determine the shape of the curve. Curve-fitting and assump-
tions based on the general shape of semi-rectellipse are used to identify
p x( ) and q x( ). Adjusting these parameters leads to the generation of a
very wide range of shapes; and the typical ship sections are a subset of
this range. If p x( ) and q x( ) are greater than 2, we get a super-ellipse. If
they are equal to 2, we get back the well-known ellipse. If they are less
than 2, we get sub-ellipses. Fig. 1(a,b,c) shows the geometrical shapes
traced by a semi-rectellipse for 3 broad categories of parameters. For
Fig. 1(a), both p and q are greater than 2, which leads to a full-form
shape. For Fig. 1(b), p is greater than 2, q is less than 2 to bring in a flare
shape. In Fig. 1(c), p is less than 2 and q is greater than 2 to generate a
stern overhang section shape.

• Fig. 2(a) : As p q, , the bilge radius → 0 and the sections be-
come more squarish, and corners sharper.

• Fig. 2(b) : As >p p( 2) and <q q0 ( 2), the keel plate
breadth → moulded breadth, and flares get manifested.
• Fig. 2(c) : As <p p0 ( 2) and >q q( 2), the deadrise angle
→ 0, without compromising on the beam B.
• Order =p q, 1 gives a wedge section.

On varying the parameters of the super-ellipse it is conveniently
generating typical midship section (large values of p and q), forward
flare (fractional values of q) and propeller stern overhang sections
(fractional values of p).

2.1. Methodology of application of semi-superellipse to generate the hull
section shape

To define a section of the hull girder and replicate the body plan as
closely as possible, we require four (4) parameters as inputs (a x( ), b x( ),
p x( ) and q x( )), as mentioned in Eq. (1). The semi-major and semi-minor
axes at each station a x( ) and b x( ) are exactly same as the local half-

Fig. 1. (a) Midship Section, = = = =a b p q22, 20, 12, 12. (b) Forward
Section, = = = =a b p q5, 10, 2, ¼. (c) Stern section,

= = = =a b p q22, 7, , 51
5 .
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breadth and depth respectively. The range of values, that need to be
chosen for p x( ) and q x( ) in order to generate the typical sections along
the length of the hull, is identified above. Based on these assumptions,
by curve-fitting, any section can be replicated and optimized values of p
and q are identified. A MATLAB program is developed to follow the
procedure for any number of stations; and a major length of the hull (if
not the total length of the hull) can be replaced by a collection of semi-
rectellipses. It is important to note that while the semi-rectellipse can
conveniently generate forward flare, sections amidships and stern
overhang; sections extreme aft and extreme fore (like bulbous bow etc.)
cannot be generated. Hence the final body plan will be a blend of semi-
superelliptic sections and B-spline sections. NURBS (Non-uniform ra-
tional B-Spline) surfaces can be suitably employed for the hull form
design. Once the basic design is obtained, the body plan can be im-
ported into an image-reading code in MATLAB which can replace a
wide range of body plan sections with equivalent semi-rectellipses. The
subsequent hull form can be conveniently analysed by energy-based
methods for free vibration in various degrees-of-freedom. Closed-form
analytical expressions exist for the solid–section structural area, neutral
axis height, second moment of area in horizontal and vertical bending,
polar moment of inertia etc., as shown in Sadowski [18]. For e.g.:

+ +

+ +

+ + +

+ +

( ) ( )
( )

( ) ( )
( )

A a x b x p x q x ab NA x

b

Structural area ( ( ), ( ), ( ), ( )) 2 , Neutral axis ( )

4
2

,

p
p

q
q

p pq q
pq

q
q

q
p pq q

pq

p pq q
pq

1 1

1 2
2

2

Second moments of area about x -axis and y -axis, and polar mo-
ment of area about the centroid (for solid section):
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q

p
p

p pq q
pq
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p

q
q

q pq p
pq

p bv bh

3
3 1

3

3
3 1

3

2 (2)

where A, NA, I x( ),bv and I x( )bh give the cross sectional area, the neutral
axis, the second moment of area in vertical bending about the deck line,
and the second moment of area in horizontal bending about the central
line respectively. I x( )p is the sectional polar moment of inertia, and ‘e’ is
the eccentricity between neutral axis and shear centre. Gamma function

=t x e dx( ) t x
0

1 , can be evaluated easily in commercial softwares.
This becomes handy for the preliminary estimation of hull girder nat-
ural vibration frequencies, at the early stages of design. Storage of
section-shapes and hull geometry information is much easier using a
semi-rectellipse than by NURBS, because we require only 4 parameters
to generate/identify a curve. The reasonably accurate representations
of ship geometry help the preliminary designer to conveniently model
the arbitrary mass and stiffness distributions over the length of the hull.
The import and export of the body-plan of the ship from one software to
another requires much less memory and time.

2.2. Geometry of case studies in the project Hull form modelling (actual and
mathematical) and properties

The case study of this work is a 7800 TEU containership, as described
in Senjanović and Ćatipović [13]. However, since the concept of rec-
tellipses in generating the body plan of a vessel is being attempted for the
first time, a few benchmark cases have been studied before the actual case
study vessel, with the same dimensions (L= length overall=334m,
B=moulded breadth=42.8m, D=moulded depth=24.6m). The shell
thickness is considered as 20mm. The cases considered are:

(a) Fig. 3(a) : Bare hull, semi-ellipsoid (order 2) :

+ + = =x
L

y
B

z
D

C
/2 /2

1, Block coefficient 0.523.b

2 2 2

(3a)

(b) This gives a semi-ellipsoid, with the same length, breadth and depth
of the containership.

(c) Fig. 3(b) : Bare hull, semi-superellipsoid (order 4);

+ + = =x
L

y
B

z
D

C
/2 /2

1, Block coefficient 0.835b

4 4 4

(3b)

(d) An increased power in the Lame’s curve gives a fuller geometry, as
reflected in the block coefficient.

(e) Fig. 3(c) : Uniform (prismatic) bare hull, semi-rectangular channel.
Eq.(1) has very high magnitudes of both p and q, say> 20, and thus
the rectellipse is almost of a rectangle and hardly an ellipse. The
cross-section is uniform throughout the length.

(f) Fig. 3(d) : Uniform (prismatic) bare hull, semi-rectelliptic channel
(order 6). Here, =p q, 3. This gives a fuller midship section shape
than case(a) and case (b). The cross-section is uniform throughout
the length.

(g) Fig. 3(e) : Uniform (prismatic) bare hull, semi-circular channel. The
cross-section is uniform throughout the length.

(h) Pontoon-type prismatic hull (midship section of 7800 TEU

Fig. 2. (a) Midship Section (p q, ). (b) Forward section (p q, 0).
(c) Stern section (p q0, ).
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container vessel extending throughout the length).
(i) Fig. 3(f) : 7800 TEU container vessel (Senjanović and Ćatipović

[13]), non-uniform 3D structure, unstiffened bare hull.

Table 1a shows the details of the rectelliptic calculations for the first
six benchmark cases. The extreme dimensions and moulded dimensions
have both been considered, since the final properties of the thin-walled
section is the difference between the properties of extreme and moulded
dimensions. Table 1b shows the final sectional properties:

• Sectional material area= Extreme dimensions area – Moulded di-
mension area;
• Neutral axis from the deck =

× ×Extreme dimensions area NA – Moulded dimension area NA
Sectional material area

extreme moulded

• 2nd moment of area about the horizontal axis(m4) = Extreme di-
mensions I x( )bv – Moulded dimension I x( )bv ;
• 2nd moment of area about the vertical axis (m4) = Extreme di-
mensions I x( )bh – Moulded dimension I x( )bh ;

The first 6 cases are symmetric fore-aft. A semi-ellipsoid is an order-2
curve which has a finer form, while a semi-superellipsoid (order-4) is a
fuller form with fore and aft shoulders. Case(a) and Case (b) are for
basic studies only. They have no similarity with the containership ex-
cept for the main dimensions. They are rectellipsoids, instead of being
sectionally rectellipses. A semi-rectangular channel (case (c)) is also a
rectellipse, of order> 20. A semi-rectelliptic section (case (d)) is a
rectellipse of order 4, which will have fuller form as compared to a
semi-circular channel of order 2 (case (e)). The pontoon-type prismatic

Fig. 3. a) Semi-ellipsoid. b) Semi-rectellipsoid. (c) Rectangular channel.d) Semi-superellipsoid channel. (e) Semi-circular channel. (f) 7800 TEU container vessel.
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hull (case (f)) has the same midship section as the 7800 TEU container
ship. Case (g) is the actual containership hull-form (though minus the
internal structures) without fore-aft symmetry. The geometry has been
limited to the bare hull for simplicity, since the same aim is to highlight
the efficacy of the application of rectellipses, such that this metho-
dology can be applied in practice, particularly in the initial stages of the

design spiral. The redistribution of actual hull properties is an im-
portant future work. This is a benchmark study of the actual stiffened
containership hull, for preliminary estimates of the hull girder fre-
quencies (in various modes), using the Rayleigh-Ritz method, which is
supported by geometry definitions using the concept of rectellipses.

In Table 2a, LOA is the overall length, LPP is the length between

Table 1a
Geometry of solid section of extreme and moulded dimensions of the benchmark cases.(a–f)

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)
Semi-ellipsoid Semi-rectellipsoid Rectangular

channel
Semi-rectelliptic
channel

Semi-circular
channel

Pontoon

p 2 4 20 4 2 14
q 2 4 20 4 2 14
a (extreme breath/2) 21.4 21.4 21.4 21.4 21.4 21.4
b (extreme depth) 24.6 24.6 24.6 24.6 24.6 24.6
a (moulded breath/2) 21.38 21.38 21.38 21.38 21.38 21.38
b (moulded depth) 24.58 24.58 24.58 24.58 24.58 24.58

Basic Gamma
function

q(1/ ) 1.773 3.622 19.422 3.622 1.773 13.742
+ +p pq q pq(( )/ ) 1.000 0.886 0.949 0.886 1.000 0.935
+ q q((2 )/2 ) 0.997 1.227 1.617 1.227 0.997 1.563

+ +p pq q pq((2 )/ ) 1.330 0.920 0.932 0.920 1.330 0.915
q(3/ ) 0.886 1.227 6.212 1.227 0.886 3.355
p(3/ ) 0.886 1.227 6.212 1.227 0.886 4.355
+ p p((1 )/ ) 0.886 0.905 0.971 0.905 0.886 0.962
+ q q((1 )/ ) 0.886 0.905 0.971 0.905 0.886 0.962

+ +p pq q pq((3 )/ ) 1.994 1.000 0.917 1.000 1.994 0.898
+ +p pq q pq(( 3 )/ ) 1.994 1.000 0.917 1.000 1.994 0.898
+ p(0.5 1/ ) 0.997 1.227 1.617 1.227 0.997 1.563

Extreme section
area =

+ +

+ +
Area ab2extreme

p
p

q
q

p pq q
pq

1 1 829.46 973.75 1045.82 973.75 829.46 1040.19

=

+ + +

+ +
NAextreme

qb
q

q
p pq q

pq
p pq q

pq

4
1

2

2
2

2

10.41 11.60 12.25 11.60 10.41 12.24

2nd moment of area about horizontal neutral axis
+

+ +
ab
q

q
p

p
p pq q

pq

2 3
3 1

3

1.255E+05 1.769E+05 2.095E+05 1.769E+05 1.255E+05 1.635E+05

2nd moment of area about vertical neutral axis
+

+ +
a b
p

p
q

q
q pq p

pq

2 3
3 1

3

9.498E+04 1.339E+05 1.586E+05 1.339E+05 9.498E+04 1.606E+05

Moulded section
area =

+ +

+ +
Area ab2moulded

p
p

q
q

p pq q
pq

1 1 828.01 972.05 1044.00 972.05 828.01 1038.37

=

+ + +

+ +
NAmoulded

qb
q

q
p pq q

pq
p pq q

pq

4
1

2

2
2

2

10.40 11.59 12.24 11.59 10.40 12.23

2nd moment of area about horizontal neutral axis
+

+ +
ab
q

q
p

p
p pq q

pq

2 3
3 1

3

1.251E+05 1.764E+05 2.088E+05 1.764E+05 1.251E+05 1.630E+05

2nd moment of area about vertical neutral axis
+

+ +
a b
p

p
q

q
q pq p

pq

2 3
3 1

3

9.464E+04 1.334E+05 1.580E+05 1.334E+05 9.464E+04 1.600E+05

Table 1b
Midship section properties of the benchmark cases.(a–f)

Case(a) Case(b) Case (c) Case (d) Case (e) Case (f)

Sectional material area (m2) 1.45 1.70 1.83 1.70 1.45 1.82
Neutral Axis (m) from deck (NA) 15.24 16.99 17.95 16.99 15.24 17.93
2nd moment of area about the horizontal axis(m4)Ibv 422.90 596.20 706.00 596.20 422.90 550.96

2nd moment of area about the vertical axis (m4)Ibh 343.07 483.65 572.72 483.65 343.07 580.17
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perpendiculars, B is the moulded breath, D is the moulded depth. In
Table 2b, Cb is the block coefficient, Cp is the prismatic coefficient, CM is
the midship section area coefficient, Cwp is the water plane-area coef-
ficient. In Table 3, ‘e’ is the distance between the centre of gravity and
the shear centre, Ip is the polar moment of area, J is the torsional
constant, Iw is the warping constant, Ibv is the second moment of cross-
sectional area about the horizontal neutral axis (used for vertical vi-
bration), Ibh is the second moment of cross-sectional area about the
vertical neutral axis (used for horizontal vibration). The axis-system is
as follows :

• The x -coordinate is along the length. It starts at the midship, is
positive towards the forward perpendicular (FP) and negative to-
wards the aft perpendicular (AP) of the mathematical hull. Here,

< <xL L
2 2 .

• The y -coordinate is transverse positive towards the starboard.
Here, < <B y B/2 /2.
• The z coordinate is vertically upwards. Here, < <D z 0.

A 7800 TEU container vessel from the work by Senjanović and
Ćatipović [13] has been studied here. The basic dimensions and owner’s
requirements of the vessel are tabulated in Table 2(a). The form coef-
ficients of the design vessel are tabulated in Table 2(b). Fig. 4(a) shows
the actual NURBS body plan imported from MAXSURF after design.
Fig. 4(b) shows the super-elliptic body plan generated using the su-
perellipse methodology explained previously in Section 2. Fig. 4(c)
shows hybrid body plan, which is a mixture of Fig. 4(a–b). As far as
60% of stations of the NURBS body plan (Fig. 4(a)) were successfully
replicated through semi-superellipses, by choosing appropriate p x( )
and q x( ) for each station. Fig. 5 shows the longitudinal variation of the
super-elliptic powers p x( ) and q x( ). It can be observed that the para-
meter p x( ) has fractional values closer to the aft sections. This shows
that the curve-fitting replicates typical aft sections with the stern
overhang. The value of the parameter q x( ) has fractional values closer
to the fore sections. This shows that the curve-fitting closely replicates
the sections with flares in the fore.

The torsion constant including the effects of warping is different
from the pure torsion constant (without warping).If warping did not
exist, the axial displacement would have been zero. However, a
warping function defines the axial deplaning displacement in addition
to the twist angle; and is determined from the boundary conditions and
compatibility equations. The details are found in Srinath [19]. The
torsion constant can be calculated once we know the warping function

x y( , ) distribution across the cross section. The torsion constant is

given as = + +( )J x y x y dxdy.
Area

x y
y

x y
x

2 2 ( , ) ( , ) The warping con-

stant is given as =I dA.w
2 From warping modulus, the warping

bimoment is defined as =B EI .warp w x

2
2 The rectangular open channel

with breadth B, depth D and thickness t has values of shear centre offset
from keel as D B t

I4 bv

2 2
, torsion constant and warping modulus values re-

spectively as = + = +
+( )J D B I; (2 ); .t

w
tD B D B

D b3 12
3 2
6

3 3 2
For the semi-circular

open channel with radius r and thickness t , we have shear centre offset
from keel as = = ( )( )r J I1 ; ; .rt

w
tr4

3
2

3 8
123 5 3

If warping was

Table 2a
Main particulars of the 7800TEU container ship.

LOA LPP B D L/B L/D Draught Design displacement

334m 319 m 42.8m 24.6m 7.80 13.6 14.5 m 135530 tf (7800 TEU)

Table 2b
Form coefficients of the 7800TEU container ship.

CB Cp Cwp Cm LCB

0.668 0.675 0.79 0.99 −1.94 % LPP

Table 3
Midship section properties of the 7800 TEU container ship.

IP J Iw e Ibv Ibh

334m4 14.45 m4 171400m6 25.16m 676m4 1899 m4

Fig. 4. a)NURBS body plan. (b) Pure semi-superelliptic body plan. (c) Hybrid
body plan.

Fig. 5. Longitudinal Distribution of semi-rectellipse powers (order) ‘p’ and ‘q’.
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completely restrained, we have =J Ip ; where Ip and are polar mo-
ment of inertia and density of material (= 7850 kg m/ 3, i.e. mild steel)
respectively. However, when warping is significant, this value cannot
be chosen for torsion constant. The cross-sectional properties (Table 3)
thus calculated, have been used in the subsequent vibration analysis.

3. Governing differential equations and boundary conditions for
hull girder vibration

The following modes of vibration of the hull have been studied : (i)
Vertical (symmetric) vibration : this mode is quite decoupled from the
other modes of vibration, (ii) Pure torsional vibration (St. Venant’s
torsion), (iii) Torsion-warping vibration (Vlasov torsion), (iv) Coupled
horizontal-torsional vibration, (v) Coupled horizontal-torsional-
warping vibration

3.1. Vertical vibration

Ignoring the effects of shear deformation, the vertical vibratory
displacement w x t( , )v of the non-uniform and uniform beam respec-
tively obeys

+ = + =m x w x t E
x

I x w x t
x

mw x t EI w x t
x

( ) ¨ ( , ) ( ) ( , ) 0; ¨ ( , ) ( , ) 0v bv
v

v bv
v2

2
2

2
4

4 (4a,b)

The beam shear force and bending moment are zero at the ends, i.e

= = = =w t w L t w t w L t(0, ) ( , ) (0, ) ( , ) 0v v v v
'' '' ''' ''' (4c)

There is no axial load on the beam. Pure bending is considered, ig-
noring shear deformation and rotary inertia. The “thin beam” approx-
imation is assumed here, since the flexural deflections are small. The ship
hull is modelled as a hollow beam, with intermittent transverse bulkheads
(rendering non-uniform mass distribution, without affecting the stiffness
distribution). Shear stress over each section is maximum at the horizontal
neutral axis (NA) which intersects the steel only on the side shell.

3.2. Pure torsional vibration : St Venant’s torsion

Ignoring warping, the equation for pure torsion for non-uniform
beam is :-

=( )I x G J x( ) ( ) 0p
x t

t x
x t
x

( , ) ( , )2
2 (5a) where x t( , ) is the twist

angle as a function of space and time. All the torque balances are done
about the shear centre. Any force acting through the shear centre will
not cause any twist in the shape. Though the boundary conditions are
same as that of a uniform beam, the modeshapes of non-uniform will
not be single cosine/sine function because they are superposition of
uniform beam modeshapes. For uniform beams, the equation becomes

=I x t
t

GJ x t
x

( , ) ( , ) 0p
2

2

2

2 (5b)

The pure twisting torque is zero at the ends, i.e. with the free
boundary condition, i.e.

= =GJ t GJ L t(0, ) ( , ) 0' ' (5c)

3.3. Torsional-warping vibration

A circular section will not undergo warping while undergoing tor-
sion. Warping is a sectional deplaning phenomenon [8]. All the mo-
ments are balanced about the shear centre of the non-uniform beam.
For free vibration, the equation for torsional mode of vibration is given
as

+ =I x x t
t

E
x

I x x t
x

G
x

J x x t
x

( ) ( , ) ( ) ( , ) ( ) ( , ) 0p w
2

2

2

2

2

2

(6a)

For uniform beams, the equation simplifies as

+ =I x t
t

EI x t
x

GJ x t
x

( , ) ( , ) ( , ) 0p w
2

2

4

4

2

2 (6b)

The beam is subject to the boundary conditions of bimoment and
total twisting moment equal to zero at the ends. With free edge con-
dition (the normal stress due to warping at the free edge is zero; and
also the total twisting moment is zero at the ends):

= =
= =

EI t EI L t EI t GJ t
EI L t GJ L t

(0, ) ( , ) 0; (0, ) (0, )
( , ) ( , ) 0

w w w

w

'' '' ''' '

''' ' (6c)

This is in accordance with Bishop et al [5], and thus an improve-
ment over Li et al [1], Senjanović and Ćatipović [13], who generate the
modeshape by withholding warping, thereby simplifying Eq. 6(c) to

= = = =t t L t L t(0, ) (0, ) ( , ) ( , ) 0.

3.4. Horizontal vibration

The horizontal vibration has the same governing differential equa-
tion and boundary conditions as the vertical vibration, but the geo-
metric properties get changed. Ignoring the effects of shear deforma-
tion, the horizontal vibratory displacement w x t( , )b of the non-uniform
and uniform beam respectively obeys

+ =

+ =

m x w x t E
x

I x w x t
x

mw x t

EI w x t
x

a b

( ) ¨ ( , ) ( ) ( , ) 0; ¨ ( , )

( , ) 0 (7( , ))

b bh
b

b

bh
b

2

2

2

2

4

4 (7a,b)

At the two free ends, the shear force and bending moment are zero,
i.e.

= =
= =

EI w t EI L w L t EI w t
EI L w L t

(0) (0, ) ( ) ( , ) (0) (0, )
( ) ( , ) 0

bh b bh b bh b

bh b

'' '' '''

''' (7c)

3.5. Pure torsion-horizontal coupled vibration

The pair of coupled horizontal-torsional vibration governing dif-
ferential equations are :

+ +

= +

=

m x w x t E
x

I x w x t
x

m x c x x t
t

I x x t
t

G
x

J x x t
x

m x c x w x t
t

( ) ¨ ( , ) ( ) ( , ) ( ) ( ) ( , )

0; ( ) ( , ) ( ) ( , ) ( ) ( ) ( , )

0

b bh
b

p
b

2

2

2

2

2

2

2

2

2

2

(8a,b)

For the uniform beam,

+ + =

+ =

mw x t EI w x t
x

mc x t
t

I x t
t

GJ x t
x

mc w x t
t

¨ ( , ) ( , ) ( , ) 0; ( , )

( , ) ( , ) 0

b bh
b

p

b

4

4

2

2

2

2

2

2

2

2

(8c,d)

At the free ends, the horizontal shear force, the bending moment,
and the twisting torque are zero. The boundary conditions are:

= =
= = = =

EI w t EI L w L t EI w t
EI L w L t GJ t GJ L t

(0) (0, ) ( ) ( , ) 0; (0) (0, )
( ) ( , ) 0 ; (0, ) ( , ) 0

bh b bh b bh b

bh b

'' '' '''

''' ' '

(8e)

3.6. Torsion-warping-horizontal coupled vibration

The eccentricity of the shear centre from the neutral axis cause
significant dynamic coupling between torsional and horizontal mode of
vibration. The force and moment balance yields the system of equations
for coupled mode of vibration :
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+ + =m x w x t E
x

I x w x t
x

m x c x x t
t

( ) ¨ ( , ) ( ) ( , ) ( ) ( ) ( , ) 0b bh
b

2

2

2

2

2

2

(9a)

+

+ =

I x x t
t

E
x

I x x t
x

G
x

J x x t
x

m x c x w x t
t

( ) ( , ) ( ) ( , ) ( ) ( , )

( ) ( ) ( , ) 0

p w

b

2

2

2

2

2

2

2

2 (9a,b)

For the uniform beam, the force and moment balance equations are

+ + = +

+ =

mw x t EI w x t
x

mc x t
t

I x t
t

EI x t
x

GJ x t
x

mc w x t
t

¨ ( , ) ( , ) ( , ) 0; ( , ) ( , )

( , ) ( , ) 0

b bh
b

p w

b

4

4

2

2

2

2

4

4
2

2

2

2 (9c,d)

I x( )p is calculated about the shear centre and not the centre of gravity.
If the shear centre S is very close to the centre of gravity C, i.e.,
c x( ) 0, leading to the decoupling of the above system of equations.
This is true for closed-section tankers, in which C and S to almost co-
incide. However, for open section containerships, the distance between
C and S is of the order of depth D, leading to a strong coupling between
the two modes of vibration. The boundary conditions are (i) the
warping bimoment is zero (it is free to warp), (ii) the total twisting
moment is zero (it is free to turn), and (iii) the horizontal shear force
and bending moment are zero (not constrained against translation and
rotation); at the two ends. Thus, the boundary conditions are a com-
bination of Eq.6(c) and Eq.7(c). The admissible functions or mode-
shapes should satisfy all 8 boundary conditions (shear force, bending
moment is zero at the ends; warping bimoment and total twisting
torque is zero at the ends).

4. Solution methodology

Three methodologies have been used here : frequency search
method, Rayleigh-Ritz method, and FEM. “Frequency search” is the
already existing method for solving coupled vibration for uniform
beams. However, the method does not work for a non-uniform beam.
FEA can be used for coupled non-uniform beam; however, the process is
computationally expensive. Rayleigh-Ritz is the method being proposed
through this work. The method works for solving coupled non-uniform
vibration and requires much less computational time than FEA and
gives reasonably accurate results. The frequency search method will be
used for the following cases: torsion-warping, torsion-horizontal cou-
pled and torsion-warping-horizontal coupled vibration of uniform beam
modes. The details are found in Bishop et al [5].

4.1. Rayleigh-Ritz method

The Rayleigh-Ritz method to analyse vertical plane vibration of non-
uniform beam is shown below. The methodology can be used for pure
torsional, torsion-warping and coupled torsion-warping-horizontal vi-
bration of non-uniform beams.

4.1.1. Vertical Vibration/Horizontal vibration
Assuming small-amplitude displacements, where linear super-

position holds, the total flexural displacement w x t( , )v in Eq. (4(a)) can
be assumed to be a superposition of the modal displacements

=
=

w x t x q t( , ) ( ) ( )v
j

j j
1 (10a)

where x( )j is the jth non-uniform beam mode and q t( )j is the jth prin-
cipal coordinate, harmonic in time. x( )j is a weighted sum of the
admissible functions (uniform beam modeshapes), i.e.

=
=

x a x( ) ( )j
k

jk k
1 (10b)

where x( )k is the kth uniform vertical vibration beam modeshape,
satisfying = = = =L L(0) 0, ( ) 0, (0) 0, ( ) 0k k k k ; and ajk is the
unknown weight of the contribution of the x( )kv to the jth non-uniform
beam modeshape.

Admissible function

= + + +

=
+

x cos x x sin x sinh x
L L
L L

( ) ( ) cosh ( ) [ ( ) ( )];
sin sinh
cos cosh

j j j j j j j

j j

j j (10c)

Here, x( )j acts as the jth admissible function to the series sum (Eq.
10(b)), and satisfies the boundary conditions.

Now, let =w x t Z x cos t( , ) ( )v , where Z x( ) is an assumed shape
function and ω is the circular frequency.

Total potential and kinetic energy:

=

=

=

=

=

={ }
U EI x d Z x

dx
dx cos t T

m x Z x dx sin t

1
2

( ) ( ) ;

1
2

( )[ ( )]

x

x l

x

x l

0

2

2

2
2

2
0

2 2
(10d)

In a conservative system, =U Tmax max. Thus, the circular frequency
is expressed as

=
=

=

=
=

EI x dx

m x Z x dx

( )

( )[ ( )]
x

x l d Z x
dx

x
x l

2

1
2 0

( ) 2

1
2 0

2

2
2

(10e)

The exact solution for the frequency would be that of the mode-
shape which minimizes the frequency. In order to reach the minimum
frequency, we assume = =Z x a x( ) ( ).V k k k1 The unknown coefficients
ajk are calculated by minimizing the frequency with respect to each
coefficient. Applying the Ritz method

=
=

=

=
=a

EI x dx

m x Z x dx

( )

( )[ ( )]
0

k

x
x l d Z x

dx

x
x l

V

1
2 0

( ) 2

1
2 0

2

V2
2

(10f)

The equation reduces to

=
=

=

=

=

a
EI x d Z x

dx
dx m x Z x dx1

2
( ) ( ) 1

2
( )[ ( )] 0

k x

x l V
x

x l
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2

2

2
2

0
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(10g)

Using generalized mass and generalized stiffness
= =m x x x dx EI x x x dx( ) ( ) ( ) ; ( ) ( ) ( ) ,jk

L
j k jk

L
j k0 0
'' '' respectively,

the above set of equations reduces to : == a ( ) 0k
N

j jk jk1 which is
solved for ‘j’ number of equations. Here, = 2. The determinant of the
square matrix, when equated to zero, gives the frequency equation. This
gives an Nth order equation in , and solving it generates ‘N’ number of
roots : ……, , , , N1 2 3 . For k N1 , we input k into the system of
equations, in order to re-generate the N×N matrix. Each row corre-
sponds to one Eigen-vector, i.e. …… …a a a a a: : : : : ..:k N1 2 3 . The details may
be found in Timoshenko [20]. In the application of the Rayleigh-Ritz
method to other modes of vibration, the basic methodology of remains
unchanged. First, the uniform modeshapes are generated andthe non-
uniform modeshape is expressed as their weighted sum. The maximum
potential energy and kinetic energy are expressed in terms of the un-
known non-uniform modeshape, and the natural frequencies are mini-
mized w.r.t. the unknown coefficients. This generates the non-uniform
frequencies, and leads to the non-uniform modeshapes.

4.1.2. Pure torsional vibration (St. Venant’s torsion)
Assuming small-amplitude displacements, where linear super-

position holds, the total angular displacement x t( , ) in Eq. 5(a) can be
assumed to be a superposition of the modal displacements :

= =x t x q t( , ) ( ) ( ),j j j1 where x( )j is the jth non-uniform torsional
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beam mode and q t( )j is the jth principal coordinate, harmonic in time.
x( )j is a weighted sum of the admissible functions (uniform torsional

beam modeshapes), i.e., = =x a x( ) ( )j k jk k1 where x( )k is the kth
uniform torsional vibration beam modeshape, and ajk is the unknown
weight of the contribution of the x( )k to the jth non-uniform torsional
beam modeshape. The admissible function is =x x( ) cos( )j , satisfying
the boundary conditions = =GJ t GJ L L t(0) (0, ) ( ) ( , ) 0; where

= +j(2 1) .j 2

The energies are : =
=

T I x x dx{ ( )( ( )) }
x

l

p
1
2

0

2

=
=

{ }( )sin t U GJ dx cos t;
x

l
x

x
2 1

2
0

( ) 2 2

4.1.3. Torsion-warping vibration (Vlasov torsion)
When warping is not considered, the pure torsion modeshapes of a

uniform free-free beam is =x x( ) cos( )j j . The other waveforms be-
come non-zero when warping is included (Eq.6(a)). Thus, the ad-
missible function is:

= + +

+ = +
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H sin x GJ
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GJ
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I
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w

1 2 3

4

2 2

are the wave numbers. From the boundary conditions in Eq.(6(c)),
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The energies are:
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4.1.4. Coupled horizontal-torsional vibration
The admissible function for horizontal vibration in Eq. 8(a) is :

= + + +x cos x x sin x sinh x( ) ( ) cosh ( ) [ ( ) ( )];j j j j j j

= =
+

cos L L; ( ) cosh ( ) 1.j
L L
L L j j

sin sinh
cos cosh

j j

j j
The admissible function

for torsional vibration in Eq.8(b) is : =x x( ) cos( ),j j

satisfying the boundary conditions = =t L t(0, ) ( , ) 0' ' ; where
= +j(2 1) .j 2
The kinetic and potential energies respectively are:

= + +
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4.1.5. Coupled horizontal-torsional warping vibration
The admissible functions are the same as in Sec 4.2.1 and 4.2.3. The

kinetic and potential energies respectively are :

= + +
=

T I x x m x Z x mc x Z x dx sin t1
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4.2. Finite element method

Every beam element has four boundary conditions at each node : (a)
bending deflection, (b) bending slope, (c) twisting deflection and (d)
twisting slope. A 2-noded finite element is chosen, with eight degrees of
freedom (DOF). The bending deflection is given by the polynomial :

= + + +w a a x a x a xb 1 2 3
2

4
3, while the twisting deflection is given by :

= + + +b b x b x b x1 2 3
2

4
3. The bending and twisting slopes are given

by w
x
b and

x
respectively. The energies that contribute towards the

consistent mass matrix are:

Torsion inertia energy =
=

T I x x dx sin t( )( ( ))
x
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2
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inertia energy =
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T m x w x dx sin t( )( ( )) .
x

l

b2
1
2

0

2 2

Coupling inertia energy =
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energies contributing towards the stiffness matrix are :

Twisting strain energy =
=
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The combination of the energies are as follows :
Pure torsional vibration (St. Venant): =T T1; =U U1. Torsion-

warping vibration (Vlasov) : =T T1; =U U U2 1
Coupled horizontal-torsional vibration : = + +T T T T1 2 3;

= +U U U1 3
Coupled horizontal-torsional warping vibration : = + +T T T T1 2 3;

= +U U U U2 1 3

Table 4
Vertical vibration frequencies (rad/s) by Rayleigh-Ritz and FEA for all cases of
uniform beam.

Semi- circular channel
(Case(e))

Rectelliptic channel of order
4 (Case (d))

Pontoon (Case(f))

Rayleigh-
Ritz

FEA Rayleigh-Ritz FEA Rayleigh-Ritz FEA

15.218 15.218 17.769 17.769 10.640 10.641
41.950 41.950 48.981 48.982 29.331 29.331
83.238 82.240 96.023 96.025 57.500 57.502
139.44 135.95 158.731 158.742 95.051 95.058
203.077 203.11 237.117 237.153 141.990 142.012

Table 5
Vertical vibration frequencies (rad/s) by Rayleigh-Ritz and FEA for the non-uniform beam.

Semi- rectellipsoid (Case(b)) 7800 TEU Container ship (Case(g))

Uniform (Euler-Bernoulli) Rayleigh-Ritz FEA % error (uniform) % error (Ritz) Uniform (Euler-Bernoulli) Rayleigh-Ritz FEA %error (uniform) %error (Ritz)

17.769 18.766 19.203 7.47 2.28 10.641 11.802 11.862 10.3 0.5
48.982 50.941 52.296 6.34 2.59 29.331 29.947 30.216 2.93 0.89
96.025 99.035 101.46 5.36 2.39 57.502 56.405 56.002 2.68 0.72
158.74 162.015 166.34 4.57 2.6 95.058 89.775 89.231 6.53 0.61
237.15 240.615 246.92 3.96 2.55 142.01 131.442 130.391 8.92 0.8
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The total energy matrices form an Eigen value problem which leads
to the natural frequencies.

5. Results

5.1. Vertical vibration

Table 4 shows the comparative vertical vibration frequencies of the
simplest benchmark cases, by the Rayleigh-Ritz method and FEA, for
the three uniform beams, i.e. semi-circular channel, rectelliptic channel
of order 4, and pontoon. Since the beams are uniform, the Rayleigh-Ritz
method generates a diagonal weight matrix. Table 5 shows the

comparative vertical vibration frequencies by the Rayleigh-Ritz method
and FEA, for the non-uniform hulls, i.e. the semi-rectellipsoid and the
7800 TEU containership. The close correlation between the two
methods shows the efficacy of our approach. The Rayleigh-Ritz ap-
proach of non-uniform hull vibration analysis provides a significant
improvement over the uniform beam analysis, especially in the iden-
tification of the fundamental frequency. The details are found in Datta
and Thekinen [16].

Fig. 6(a,b) shows the FEA convergence of 1st and 2nd modes of
vertical vibration the containership for increasing number of elements/
spans. Convergence is seen to arrive at 40 elements or so. Fig. 6(c,d)
shows the Rayleigh-Ritz frequency convergence for the fundamental
mode and the first overtone of the semi-ellipsoid as a function of

Fig. 6. a) FEA convergence for 1st mode of Container ship. (b) FEA convergence for 2nd mode of Containership (c) RR convergence for 1st mode of semi-ellipsoid.(d)
RR convergence for 2nd mode of semi-ellipsoid.(e)RR convergence for 1st mode of Container ship. (f) RR convergence for 2nd mode of Container ship.

Fig. 7. RR first five(5) vertical vibration modes of Container ship.

Table 6a
1st five pure torsion frequencies (rad/s) of uniform beam.

RectangularChannel
(Case(c))

Circular
Channel
(Case(e))

Pontoon
(Case(f))

FEA % error

29.877 29.877 29.877 29.877 1.2×10−7

59.753 59.753 59.753 59.753 7.4×10−6

89.63 89.63 89.63 89.63 7.9×10−5

119.506 119.506 119.506 119.507 4.1×10−4

149.383 149.383 149.383 149.385 1.42× 10−3
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number of modes considered. The first frequency converges for 7
modes, while the second one for 8modes. This is a marked computa-
tional improvement over the FEA. For a 3D body with fore and aft
symmetry, only odd admissible functions contribute towards odd non-
uniform frequency and modeshape; and vice-versa with even mode-
shapes. This can be observed that the frequency convergence curve for
fundamental mode is undisturbed from modes 1 to 2, then from modes
3 to 4, and so on. Further for the 2nd mode, the same happens from
mode 2 to 3, then from mode 4 to 5, etc.

Fig. 6(e,f) shows the Rayleigh-Ritz frequency convergence for the
fundamental mode and the first overtone of the containership as a
function of number of modes. The first frequency is seen to converge for
9 modes, while the second one for 10 modes. For the container ship,
there is no fore and aft symmetry. Hence all the modes contribute to-
wards both odd and even non-uniform modeshapes. Odd uniform
modes significantly contribute towards odd non-uniform modeshape,
and even uniform modes significantly contribute towards the even non-
uniform modeshapes.

Fig. 7 shows the first 5 vertical non-uniform modeshapes of the
Containership, obtained from the Rayleigh-Ritz method. They lack fore-
aft symmetry/anti-symmetry. The number of nodes helps us recognize
the sequence of the modes. The distortions in the shape are due to the
presence of kth uniform mode(s) in the jth non-uniform mode. The
fundamental modeshape sees the maximum distortion. The higher-
order non-uniform modes show less distortion. Thus, the first non-
uniform frequency should show the maximum deviation from the first
uniform frequency.

5.2. Torsional and torsion-warping vibration

The pure torsion frequencies for first five modes of the uniform
beams are tabulated in Table 6a. The frequencies are unchanged on
varying the cross sectional properties in the case of St. Venant’s torsion.
This is because the frequency depends only on the length of the beam
and is independent of torsion constant and polar moment of inertia. The
pure torsion frequencies for first five modes of the non-uniform 7800
TEU containership are tabulated in Table 6b . Using the information
from Tables 2a,b-3, the two approaches are seen to produce close re-
sults, with the R-R method efficient over FEA.

The first five torsion-warping (Vlasov torsion) frequencies for var-
ious uniform beams are calculated using frequency search method,
Rayleigh-Ritz method, and FEA. Comparisons are made in Table 7a. It is
seen that all three methods fetch identical results for uniform beams.

Comparisons of the first five torsion-warping (Vlasov torsion) fre-
quencies for the non-uniform 7800 TEU container ship are tabulated in
Table 7b. From the % error from FEA results, it is clear that Rayleigh-
Ritz method offer significant advantage over frequency search method
when the beam is non-uniform. Another interesting point from Table
(7a,b) is that allowing for warping reduces the frequencies by a sig-
nificant magnitude. Pure torsion is equivalent to restraining warping by

Table 6b
1st five pure torsion frequencies (rad/s) of non-uniform beam.

Pontoon
(Case(f))

Container ship
(Ritz) (Case(g))

Container ship
(FEA) (Case(g))

% error
(uniform)

%error
(Ritz)

29.877 36.545 36.635 18.449 0.246
59.753 64.386 67.93 11.598 4.743
89.63 96.793 97.174 7.764 0.393
119.506 123.640 126.573 5.583 2.318
149.383 155.391 156.029 4.260 0.409

Table 7a
1st five torsion-warping frequencies (rad/s) of uniform beam.

Rectangular Channel (Case(c)) Circular Channel (Case(e)) Pontoon (Case(f))

Freq search Ritz FEA Freq search Ritz FEA Freq search Ritz FEA

0.012 0.012 0.012 0.0009 0.0009 0.0009 10−8 10−8 10−8

5.883 5.883 5.883 0.171 0.171 0.171 2.449 2.449 2.449
16.22 16.22 16.22 0.472 0.472 0.472 9.808 9.808 9.808
31.79 31.79 31.79 0.926 0.926 0.926 24.43 24.43 24.43
52.55 52.55 52.55 1.53 1.53 1.53 46.65 46.65 46.65

Table 7b
1st five torsion-warping frequencies (rad/s).

7800 TEU Container ship (Case(g))

Freq search Ritz FEA % error (search) %error (Ritz)

10−8 0 0 0 0
2.449 3.312 3.295 25.67 0.5
9.808 13.78 13.62 27.99 1.15
24.43 31.75 31.32 21.99 1.39
46.65 56.74 55.92 16.57 1.47

Fig. 8. First five (5) torsion modeshapes of Container ship.

Table 8
Beam characteristics.

Parameter Dimension

Length 1.28m
Breadth 0.1 m
Depth 0.058m
thickness 0.00125 m

Table 9
First four St.Venant’s and Vlasov torsion frequencies of rectangular channel
(Case(c)).

Mode Present
(no
warping)

Bishop
[5]

% error Present
(with
warping)

Bishop
[5]

% error
(St.
Venant)

% error
(Vlasov)

Mode1 124.65 122.78 1.515 138.06 135.96 9.31 1.54
Mode2 190.47 189.48 0.005 939.76 939.76 397.07 0.00
Mode3 287.27 285.7 0.55 2547.27 2547.4 789.36 0.005
Mode4 381.19 – – 3872.44 – – –
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assuming infinite warping stiffness. Fig.8 shows the first five torsion
modeshapes.

5.3. Coupled torsion-horizontal vibration

As a case study, the torsion-horizontal frequencies for a rectangular
channel (dimensions in Table 8) are obtained and compared with
Bishop (1988). For the 1st four frequencies of pure torsion and Vlasov
torsion are compared (Table 9). This again shows the efficacy of the
present approach. For open sections, ignoring the effect of coupling of
horizontal and torsional modes may result in substantially different
frequencies. This is illustrated in Table 10. The 1st four uncoupled
torsion-warping frequencies are compared with horizontal-torsion-
warping coupled frequencies for various prismatic geometries. Only a
circular channel has a negligible difference, because the centre of
gravity and shear centre coincide, leading to decoupling of the two
modes.

There can be three categories of classical boundary conditions as
elaborated. For torsion-warping, [13] chose free twisting and restrained
warping for ship-like girders; and obtained the frequencies tabulated
above for a pontoon with the same midship-section properties, but with
length 300m. The procedure was followed using free warping and free
twisting boundary conditions, using frequency search and FEA. The
results are compared in Table 11.

For various analysis methodologies in Section 4.2.2-4.2.5, the de-
viation of each ‘restricted’ frequency (pure torsion, torsion-horizontal,
and torsion-warping) from the most generic torsion-warping-horizontal
coupled frequency is shown for the 1st three frequencies of a pontoon
type hull (Table 12). They satisfy all the eight boundary conditions.
Fig. 9 shows the first five modeshapes of torsion-warping vibration of
the containership. Fig. 10 shows the first five uniform beam mode-
shapes of the coupled horizontal-torsion-warping vibration of the con-
tainership, which are used in the Rayleigh-Ritz method as admissible
functions, as shown in Sec. 4.2.5.

6. Summary and conclusion

In modern day, with increasing length of ships and its stiffening
characteristics, there is a non-negligible probability of the hull girder
vibration natural frequencies to be close to the range of encounter
frequencies of the vessel, with respect to a typical sea spectrum.
Container vessels, in general, have very low torsional rigidity due to its
open deck structure. Therefore, the vessel is highly susceptible to tor-
sional failure. The large eccentricity created between shear centre and
centre of gravity causes significant coupling between torsional and
horizontal modes of vibration. This changes the natural frequencies as
compared to those compared to the analysis of pure horizontal vibra-
tion and pure torsional vibration. Furthermore, these vessels have thin-
walled sections, and thus, warping participates significantly in the
torsional vibration. Warping stiffness is a huge value as compared to St
Venant’s torsional stiffness. Allowing for warping lowers the frequency
of the hull significantly, causing the fundamental hull frequency to be
in the range of the wave encounter frequency.

At the outset, a system of closed-form mathematical curves for semi-
superellipses is used to model the hull sections. These curves helps to
bypass a significant computation time for calculating various sectional

Table 10
Comparison for uncoupled torsion-warping frequencies with horizontal-torsion-warping coupled ones.

Rectangular Channel (Case(c)) Circular Channel (Case (e)) Pontoon (Case(f))

Un-couple couple % error Un-couple couple % error Un-couple couple % error
5.883 5.718 2.88 0.171 0.17 0.75 2.449 5.867 58.27
16.22 15.756 2.92 0.472 0.469 0.73 9.808 14.694 33.25
31.79 24.2 31.37 0.926 0.919 0.72 24.43 28.075 12.99
52.55 30.89 70.14 1.53 1.519 0.73 46.65 29.463 58.34

Table 11
Comparison of frequencies for 2 BCs adopted for the 7800 TEU containership
(Case(g)).

Free warping Restrained warping % difference

Frequency
search

FEA % diff Frequency
search

Senjanovic [13] Free vs.
restrained

0.4671 0.4671 0 0.893 0.893 91.18
2.0164 2.0277 0.56 3.250 3.250 60.28
5.1004 5.1345 0.67 7.172 7.172 39.68
9.784 9.852 2.06 12.662 12.662 28.52
16.044 16.159 0.72 19.720 19.720 22.04
23.877 24.052 0.73 28.346 28.346 17.85
33.281 33.530 0.75 38.541 38.541 14.95
44.255 44.597 0.77 50.304 50.304 11.89

Table 12
Comparison of frequencies for various analysis methodologies (Pontoon hull
(Case(f))).

Analysis type Mode1 Mode2 Mode3

freq % error freq % error freq % error

Pure torsion 29.877 409 59.753 309.65 89.63 219.25
Torsion-horizontal 1.28 78 17.51 19.16 32.29 15.01
Torsion-warping 2.449 58.26 9.81 33.23 24.43 12.98
Torsion-warping-

horizontal
5.867 – 14.69 – 28.08 –

Fig. 9. 1st five(5)non-uniform modes of torsion-warping vibration of the
Containership.

Fig. 10. 1stfive(5) uniform beam modeshapes of torsion-warping-horizontal
coupled vibration.
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properties like area, neutral axis, moment of area etc. The mathematical
idealization enables the storage of the hull geometry to occupy less
memory. Thus import and export of the hull geometry becomes easier as
compared to NURBS surfaces. The versatility of this closed-form equation
in being able to generate a wide range of body-plan shapes is shown. Their
slickness in being input into the governing differential equations of vi-
bration as closed-form expressions of the section-area properties is also
seen.

Following this, the application and advantage of Rayleigh-Ritz for
initial estimation of the fundamental natural frequency of the hull is
demonstrated. It is conclusive that Rayleigh-Ritz offers a significant
computational supremacy over the conventional FEA to study free vi-
bration of non-uniform beam, for vertical plane vibration and for hor-
izontal-torsion-warping coupled mode of vibration. The Rayleigh-Ritz
approach provides reasonably accurate results by considering only the
first few modes (say 3–5) for a highly non-uniform beam. This means
we need to solve only a system of 3–5 equations as compared to a large
number of equations in FEA. The accuracy has been verified by com-
parative studies by FEA. The free vibration (vertical, horizontal and
torsion-warping) mode of vibration has been analysed and compared
for various geometries (generated by rectellipses). Comparative studies
are made for frequencies obtained by different analysis methodologies
to provide an insight about the relative accuracies for various structural
and boundary conditions assumptions. The methodology can be ex-
tended to account for shear deformation effects.
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