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ABSTRACT

Thekinen, Joseph D Ph.D., Purdue University, December 2018. Mechanism design for
complex systems: bipartite matching of designers and manufacturers, and evolution
of air transportation networks. Major Professor: Jitesh H. Panchal Professor, School
of Mechanical Engineering.

A central issue in systems engineering is to design systems where the stakeholders

do not behave as expected by the systems designer. Usually, these stakeholders

have different and often conflicting objectives. The stakeholders try to maximize

their individual objective and the overall system do not function as expected by the

systems designers.

We specifically study two such systems- a) cloud-based design and manufacturing

system (CBDM) and b) Air Transportation System (ATS). In CBDM, two stakehold-

ers with conflicting objectives are designers trying to get their parts printed at the

lowest possible price and manufacturers trying to sell their excess resource capacity

at maximum profits. In ATS, on one hand, airlines make route selection decision

with the goal of maximizing their market share and profits and on the other hand

regulatory bodies such as Federal Aviation Administration tries to form policies that

increase overall welfare of the people.

The objective in this dissertation is to establish a mechanism design based frame-

work: a) for resource allocation in CBDM, and b) to guide the policymakers in

channeling the evolution of network topology of ATS.

This is the first attempt in literature to formulate the resource allocation in CBDM

as a bipartite matching problem with designers and manufacturers forming two dis-

tinct set of agents. We recommend best mechanisms in different CBDM scenarios

like totally decentralized scenario, organizational scenario etc. based on how well the

properties of the mechanism meet the requirements of that scenario. In addition to



xx

analyzing existing mechanisms, CBDM offers challenges that are not addressed in the

literature. One such challenge is how often should the matching mechanism be im-

plemented when agents interact over a long period of time. We answer this question

through theoretical propositions backed up by simulation studies. We conclude that

a matching period equal to the ratio of the number of service providers to the arrival

rate of designers is optimal when service rate is high and a matching period equal to

the ratio of mean printing time to mean service rate is optimal when service rate is

low.

In ATS, we model the evolution of the network topology as the result of route

selection decisions made by airlines under competition. Using data from historic de-

cisions we use discrete games to model the preference parameters of airlines towards

explanatory variables such as market demand and operating cost. Different from the

existing literature, we use an airport presence based technique to estimate these pa-

rameters. This reduces the risk of over-fitting and improves prediction accuracy. We

conduct a forward simulation to study the effect of altering the explanatory variables

on the Nash equilibrium strategies. Regulatory bodies could use these insights while

forming policies.

The overall contribution in this research is a mechanism design framework to

design complex engineered systems such as CBDM and ATS. Specifically, in CBDM a

matching mechanism based resource allocation framework is established and matching

mechanisms are recommended for various CBDM scenarios. Through theoretical and

simulation studies we propose the frequency at which matching mechanisms should

be implemented in CBDM. Though these results are established for CBDM, these

are general enough to be applied anywhere matching mechanisms are implemented

multiple times. In ATS, we propose an airport presence based approach to estimate

the parameters that quantify the preference of airlines towards explanatory variables.
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1. INTRODUCTION

The primary objective in this dissertation is to establish mechanism design based

approaches in different types of complex engineered systems (CES) where multiple

stakeholders, often with conflicting objectives, interact with one another. CES con-

sists of multiple stakeholders, each with individual and often conflicting objectives,

interacting with one another. These systems differ from traditional engineered sys-

tems in that they are not designed by a central designer or team of designers and

display the fundamental characteristics of self-organization [1]. Some of the examples

of CES are transportation networks such as Air Transportation System, communi-

cation networks, matching markets such as kidney exchange program where kidney

donors are matched to patients [2], national residency matching program where med-

ical residents are matched to hospitals [3]. In my research, I study the behavior of

interacting entities in CES, evaluate the performance of existing mechanisms in CES

applied in domains other than CES, identify the challenges and research gaps in ap-

plying these mechanisms into CES, and provide mechanism design recommendations

to address these challenges.

1.1 Research Overview

Complex Engineered Systems (CES) consist of multiple stakeholders with multi-

ple objectives interacting with one another. In CBDM for example, the stakeholders

are service seekers and service providers; service seekers are interested in desired

part quality at a minimum price, while service providers are generally interested in

maximizing revenue from their available capacity. On the other hand in ATS the

stakeholders are policymakers such as the Federal Aviation Administration (FAA),

service providers such as airlines and service users such as air passengers. Policy-
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makers aim to maximize the social welfare while airlines try to maximize their profit.

Therefore, there are as many different objectives as there are participants in these

systems.

In systems engineering literature, designing such systems is based on the assump-

tion that the stakeholders behave in a certain manner as laid out by the systems

designer. The drawback of using this assumption is that it does not consider the ob-

jectives of the independent interacting stakeholders and ignores that the interacting

entities are self-interested utility maximizers.

Therefore, an alternate approach based on mechanism design is used. Mechanism

design is the science of rule making [4]. A mechanism is an institution, procedure or

game for determining outcomes [5]. The agent who gets to choose the mechanism is

called the mechanism designer. The mechanism designer is usually part of the setting;

for example, in the case of auctioning of public goods, the government who provides

the goods is also choosing the mechanism through which the goods are allotted [5].

The larger goal of a mechanism is to design mechanisms by which selfish behavior of

the agents leads to socially optimal outcome [6].

The stakeholders operate within the rules laid out by the mechanism designer.

Overall the system behavior is driven by the actions of the stakeholders which, in turn,

depends on the rules laid. The objectives of all interacting entities are considered and

the central system is driven by a mechanism such that the overall system is driven

towards better performance and efficiency given the self-interested entities behave to

maximize their individual utilities.

In this dissertation, I focus on two such systems: Cloud-Based Design and Man-

ufacturing (CBDM) and Air Transportation System (ATS). Although the evolution

of ATS and resource allocation in CBDM sounds as two different design problems

with unique characteristics, the general approach under the mechanism design frame-

work shares commonalities as shown in Table 1.1. In a mechanism design framework

we identify the stakeholders in the system, assess the objectives of each stakeholder

which are usually different and conflicting with one another, infer the behavior of the
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Table 1.1.
Common framework of CBDM and ATS from mechanism design stand-
point.

CBDM ATS

Stakeholders
Service seekers, service

providers, and matching
platform

Airlines, FAA, passengers, and
airports

Goal of
mechanism

Optimal matching considering
true preferences of all agents

Direct the network towards
better performance

Mechanism
Designer

Matching platform Regulatory body

Inferring
behavior

Theoretical analysis; simulation
studies

Historical data on rout
decisions

Research
question

How can service seekers be
optimally matched to service

providers?

How do airlines make routing
decisions under competition?

Research
challenges

There are no studies on the
frequency at which the

matching mechanism needs to
be implemented to optimize

the matched outcomes

Most of the decision
information are proprietary
and private to the airlines

stakeholders, and design mechanism based on the information. For example, in ATS

two such stakeholders are airlines such as United Airlines, Delta, and policymakers

such as FAA. While the goal of airlines is primarily to maximize their profits, the

primary objective of FAA is to provide quality and affordable service to the pas-

sengers with fewer traffic delays, more network connectivity, and other disruptions.

On the other hand, two such stakeholders in CBDM are service seekers and service

providers. The goal of service seekers is to get their parts manufactured with desired

quality but at the lowest possible cost, whereas hand service providers strive to max-

imize the utilization of their excess capacity and profits. The mechanism designer

is the matching platform that facilitates the interaction between service seekers and

service providers in CBDM, whereas in FAA the mechanism designer is the policy-

makers who try to influence the route decisions made by airlines so as to channel

the evolution towards a better performing one. In both the scenarios, the individuals
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who do have the information about strategies and data required to make decisions

have their own private objectives and may not have the incentive to behave in the

way the mechanism designer wants them to behave. In ATS, airlines make decisions

based on proprietary data which is not available to the policymakers. Airlines reveal

only that information which is required by law such as total passengers carried, cost

etc. Most of the variables are hidden. Similarly in CBDM application such as 3D

Hubs [7] for example, they keep the formula to rank the hubs proprietary to prevent

the strategic behavior from the participating manufacturing hubs [8]. In ATS, we ad-

dress this challenge by developing a predictive model based on openly available data

while including the effect of competition. In CBDM, we perform a critical analysis of

the nature of the strategic behavior of the interacting agents and propose mechanisms

based on this analysis. Sometimes, the CES presents additional challenges which have

not been addressed in the mechanism design literature. For example, if the matching

mechanisms need to be implemented over a long duration with the stochastic arrival

of service seekers and providers, then there are no studies on the frequency at which

these mechanisms need to be implemented.

Now, in Sections 1.1.1 and 1.1.2 we discuss the motivation, research gaps, and

research questions individually in CBDM and ATS, that are addressed in this disser-

tation, in detail.

1.1.1 Cloud-Based Design and Manufacturing

Cloud-based design and manufacturing (CBDM) is a decentralized, service-oriented

design and manufacturing model where participants utilize product development re-

sources, such as CAE tools and manufacturing equipment, using cloud computing,

and other related technologies [9]. CBDM involves interactions among two groups

of participants: service seekers and service providers as shown in Figure 1.1. Service

seekers are designers need to manufacture or use computational resources but do not

possess the capabilities to do so. Service providers own and operate equipment or
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other resources and are ready to offer users instantaneous access to these capabilities.

The equipment may be 3D printers, CNC machines or some other manufacturing

resources.

Machine-owners/

Manufacturers/

Service providers

Designers/

Service seekers

Figure 1.1. Decentrally distributed machine-owners sell their excess ca-
pacities to designers.

There are online service platforms such as 3D Hubs [7] and Shapeways [10] that

try to facilitate the interaction between decentrally distributed designers and manu-

factures but function based on mechanisms that have several drawback. 3D Hubs has

more than 25000 registered 3D printer machine owners worldwide [11]. Figure 1.2

shows the global geographical outreach of 3D Hubs. Designers who do not own a 3D

printer use this platform to benefit from the manufacturing resources. In brief, 3D

Hubs work as follows- the designer uploads the stl format of the design file into their
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server, their internal software lists a set of compatible and available machine owners

after processing the file, the designer selects a desired machine among the available

choices after which the machine owner prototypes the design and dispatches the pro-

totype to the designer. Here, the designer are assigned to machine owners based

on the choice of the designer on a first come first serve basis (FCFS). This FCFS

based framework to match designers to machine owners comes with several draw-

backs. Some of the drawbacks of FCFS are (a) the participating agents may have to

indefinitely wait in the queue, (b) the strategic nature of interacting agents is ignored,

(c) preferences of only the designers are considered while those of manufacturers are

ignored. All these drawbacks are discussed in-depth in Chapter 2. There is a need

to establish mechanisms that can allocate the decentrally distributed manufacturing

resources to the decentralized designers more optimally.

Figure 1.2. This figure shows the world-wide geographical distribution of
manufacturers registered with 3D Hubs (source: 3D Hubs [7]).

Existing resource allocation methods in job-scheduling and operations research( [12],

[13], [14], [15]) do not address the drawbacks discussed earlier associated with FCFS.
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For example, Smith [12] proposed a job scheduling algorithm for a single machine but

makes implicit assumptions that the participating agents will act as instructed. Nisan

and Ronen [14] proposed a job-scheduling algorithm that accounts for the strategic

behavior of the participants and Heydenreich et al. [15] extended this idea to a strate-

gic setting where the participants may manipulate the job processing time, arrival

time of job, and the cost of waiting time. However, in both the studies the focus is

only on optimizing some global objective function such as overall completion time or

cost and the individual objectives of the independent agents are ignored. As a result,

there is a need to establish a mechanism design based resource allocation method.

Conventionally, mechanism design, as a branch of science, was developed to tackle

problems in economics and more recently in computer science. Existing mechanism

design methods cannot be directly applied in these applications because of the unique

challenges that CES offers which has not been addressed in the historic applications

for which these mechanisms were developed. For example, if matching mechanisms

are used to allocate manufacturing resource in CBDM, there are no existing studies

in mechanism design literature on how frequently such mechanisms need to be im-

plemented. This is because the matching theory was developed for economics-related

applications such as matching students in National residency program [16] or match-

ing kidney donors to patients [2]. In these applications, implementing the matching

mechanism is a one-time process. But in CBDM, where service seekers and service

providers arrive continuously over a long period of time, these mechanisms need to

be implemented repetitively over several matching cycles. Choosing the optimal fre-

quency at which these mechanisms need to be implemented is a mechanism design

issue. Another challenge is that the objective that a systems designer strives to op-

timize varies from one application to another. In one scenario the focus may be on

maximizing the total utility attained, whereas in another it may be on the fairness

of their distribution. In yet another scenario, the resource allocation approach needs

to be robust towards dynamical arrival and exit of service seekers or providers. No

mechanism addresses all of these objectives simultaneously. Depending on the tar-
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get application the mechanism that meets the requirements needs to be chosen after

analysis.

One of the primary requirements of a CBDM platform is to determine an optimal

allocation of resources considering the objectives of all the participants. The service

seekers and the service providers have different, often conflicting, objectives. Ser-

vice seekers are interested in desired part quality at a minimum price, while service

providers are generally interested in maximizing revenue from their available capac-

ity. Hence, in CBDM, the goal is service matching, which involves determining which

service providers will serve different service seekers.

With the aim of achieving the goal of optimal service matching in CBDM three

research questions are addressed:

• RQ1.1 How do the utilities and quality of matches attained by service seekers

and service providers by implementing existing bipartite matching mechanisms

compare against FCFS under resource scarce and resource abundant conditions?

• RQ1.2 How can service seekers be optimally matched to service providers in

different decentralized design and manufacturing scenarios, considering the true

preferences of all agents?

• RQ1.3 What is the optimal frequency of implementing matching mechanisms

so as to maximize the matching objectives such as service seeker utility, service

provider utility, and fairness in their distribution?

We use matching theory, which has been used for different matching problems

such as matching students to schools, kidney donors to patients for transplant [2],

and residents to hospitals [3]. This is the first application of matching theory within

the CBDM context. An illustration of resource allocation in CBMD as a bipartite

matching problem is shown in Figure 1.3. The applicability of different matching

algorithms in different decentralized design and manufacturing scenarios and the ef-

fects of the strategic behavior of participants on the efficiency of the matching are

analyzed. The influence of dynamic entry and exit of service seekers and providers
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on the optimality of matches, which is crucial in a CBDM framework, is studied. In-

sights on the effects of market thickness and resource availability on these matching

algorithms are drawn using simulation studies.

Designer 1

Designer 2

Designer 3

Designer 4

Machine Owner 1

Machine Owner 2

Machine Owner 3

Machine Owner 4

Bipartite 

Matching

Figure 1.3. Illustrating resource allocation in decentralized design and
manufacturing as a matching problem.

The influence of frequency of implementing the matching mechanisms on the opti-

mality is studied. For example, if the frequency is too low then the quality of matches

is low due to the lack of market thickness. On the other hand, if matching is performed

infrequently then the waiting time is high thereby decreasing the social utility. The

best matching mechanisms identified by answering RQ1.2 is studied. Each CBDM

scenario is subjected to different resource setting (resource surplus, resource-scarce)

and the performance of the mechanism in those conditions is studied.
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There are three primary contributions in the field of cloud-based design and

manufacturing from this part of the dissertation: a) framing the resource alloca-

tion problem as a matching problem and evaluating the performance of matching

mechanisms in comparison to current FCFS based approach in resource-scarce and

resource surplus scenarios, b) classifying CBDM applications into three main sce-

narios, studying the nature of interaction between the participants in these scenarios,

and proposing best matching mechanisms in each of those scenarios, and c) proposing

optimal frequency of implementation of matching mechanisms.

1.1.2 Air Transportation System

The US Air Transportation System (ATS) is a complex network with airports as

nodes and routes connecting the airports as links [17]. Routes are operated by airlines

and all such routes collectively determine the topology of the network. Frequently

new routes get added and existing routes gets deleted by airlines. The evolutionary

dynamics of the network topology depends on these decisions.

Such decisions on whether to operate a new route or delete an existing route are

made by airlines based on a number of factors such as route characteristics such as pas-

senger demand, distance, operating cost and competition from other airlines. These

factors depend on the decisions made by other stakeholders in the Air Transporta-

tion System such as the Federal Aviation Administration (FAA), Airport Authorities,

air passengers, etc. For example, FAA could incentivize certain links thereby lower-

ing the operating cost in that link. Passenger preference towards different modes of

transportation influence the passenger demand.

In ATS the topology evolves through time based on routing decisions. Every year,

the number of new routes getting added and the number of existing routes getting

deleted cumulatively sum to nearly 10% of the total number of routes [18]. Figure 1.4

shows the route map of DL in July 2018. It also shows the future routes that DL is

planning to add and the new routes that were added in the month of July 2018.
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Delta Air Lines/Delta Connection/
Delta Joint Venture Route

New Route Starting this Month

Future Route Service

Destination served by Delta/
Delta Connection

Destination served by one of Delta’s 
Worldwide Codeshare Partners

Effective July 2017. Select routes are seasonal. Some future 
services subject to government approval. Service may be 
operated by one of Delta’s codeshare partner airlines or one 
of Delta’s Connection Carriers.  Flights are subject to change 
without notice.
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Figure 1.4. This figure shows the route map of Delta airlines in the year
2018 (source: Delta airlines [19]).

Multiple stakeholders with conflicting objectives make decisions leading to the

evolution of the network in ATS. In ATS, airlines such as United Airlines (UA) and

Delta (DL) frequently add new routes and delete existing ones. These route selection

decisions are made in response to federal airline policies by regulatory bodies such as

FAA. The airlines make these route selection decisions with the objective of maxi-

mizing their profits, market share etc. Regulatory bodies such as FAA make policies

so as to channel the evolution of the network topology towards better performance.

Throughout history, several policies undertaken by the FAA have shaped the evolu-

tion of the US ATS. For example, the Airline Deregulation Act of 1978 transformed

the network structure of major airlines from a point-to-point into a hub-and-spoke

one [20]. Figure 1.5 shows the snapshots of the historic network structure of UA.
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It can be seen how UA transformed from a point-to-point structure in 1950s and

1960s into a hub-and-spoke one in 1980s. The network structure of hub-and-spoke is

more convenient from the standpoint of the passengers as it offers more options on

routes whereas point-to-point is less costly for airlines. The hub-and-spoke network

is used by legacy carriers like UA and DL, whereas low-cost carriers like Southwest

use point-to-point structure. Over time, legacy carriers use a hybrid of point-to-point

and hub-and-spoke structure to capture both economies of scale and cost benefits.

Pre-deregulation

1955

1968

Post-deregulation

1984

2007

Figure 1.5. This figure shows the route map of Delta airlines in the year
2018 (source of the yearly maps: Metabunk.org [21]).

In addition to federal policy decisions by FAA, market variables such as passenger

demand, operating cost, network level factors like presence of hubs, competition from

other airlines, and several other factors affect the route selection decisions of airlines.
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Most of the decision variables are unknown to the policymakers and stakeholders

other than the airlines making these decisions. Therefore, it is important to develop

a decision model that explains how airlines make route selection decisions as a func-

tion of observable factors such as market demand and operating cost. Some of these

observable factors such as operating cost can be controlled by the policymaker by

levying taxes or adjusting fuel prices. Such a model can guide policymakers in mak-

ing informed policy mechanism decisions that channel the evolution of the network

towards desired performance.

Several desirable properties such as connectivity, lack of congestion, robustness

depend on the topology of the network. Route decisions made by the airlines deter-

mine the topology of the network. Hence it is important to understand how such

route decisions are made by the airlines and design incentive schemes to influence

such decisions so as to steer the network towards better performance.

Understanding the decision model of airlines and to design incentive schemes for

policy makers. The actual decision model of the airline is not public knowledge.

Airlines base their decisions on data that are available only to the airlines. Federal

policy makers aim to maximize social welfare in an environment where airlines make

routing decisions with the sole intention to maximize their profit. To address this

challenge two research questions are answered:

• RQ2.1 How do the airlines make routing decisions in the presence of competi-

tion from other airlines?

• RQ2.2 How are the route decision strategies of the airlines affected by varying

the explanatory variables such as market demand and operating cost?

In this dissertation the analysis is limited to the route structure only. While route

structure is a critical strategic choice there are other strategic decisions made by

the airlines such as how many flights to allot, which aircraft and how much load to

carry in those, etc. However, this is not a limitation of the model. The approach

developed can be extended to study such decisions as well. We focus our studies on
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Policies

Route 

Decisions

US domestic Air Transportation Network

✓ Market Demand

✓ Operating cost

✓ Network level structure

✓ …

Figure 1.6. Interaction between multiple stakeholders resulting in the
topology evolution of the US ATS.

route structure because the topology forms the backbone of the network. Properties

such as robustness, connectivity, resilience depend on the topology. Hence, it is in

the interest of the policymakers to guide the evolution of the network topology into

the targeted structure so as to achieve targeted performance.

Data on past decisions made by the airlines within the US ATS provide inferences

on the decision parameters. Because the decision on whether or not to operate on a

route is a discrete choice and involves the decision made by a competitor, our method

is based on the discrete games. At each route, the airlines play a strategic game on

whether to operate or not to operate. The strategic decision of whether to operate is

based on preferences for route characteristics such as demand, cost, and competition

from other airlines. First, preference parameters are solved ignoring competition
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using discrete choice analysis assuming route decisions are independent. Using the

information gained on the preference parameters as prior, and using the historic

routing decisions under competition as a basis for likelihood functions Markov Chain

Monte-Carlo (MCMC) Metropolis-Hastings algorithm is used to obtain estimates on

the decision parameters. The decision model so developed using those parameters are

to predict the topological evolution of the network.

Using the inferences gained on routing decisions by airlines we aim to guide policy-

makers to design mechanisms that can channel the network into better performance.

The topology evolves from one period to next based on the routing decisions. Once

we develop a model that mimics the routing decisions of the airlines, the next step is

to control the airline decisions through policy decisions. It is important to understand

the implications of the policy while designing such policies. Our aim is to guide such

policymakers in designing the right policies based on its implications. This broad

objective is achieved in two steps: first, a network-level welfare metric that can assist

the policymakers in quantifying the effectiveness of their policies, perform different

policy experiments and evaluate its implications on network performance (quantified

by the metric developed). An important policy decision under question is single-till

versus double-till regulation in airports. There is an ongoing debate about which

policy is more effective from a social welfare point of view. All the existing studies

quantify social welfare based on total profits that the airlines and airports make. Dif-

ferent from those, we quantify social welfare based on network-level performance and

aim to compare the effectiveness of both these policies to guide the regulatory bodies.

Finally, we validate our approach based on important historic policies made such as

the Wright Amendment, on how the actual implications compared with predicted

implications.

The two primary contributions in ATS are: a) using an airport presence based

approach to estimate parameters of discrete games to improve prediction accuracy,

and b) using forward simulation to understand the behavior of the airlines in response

to variation in explanatory variables.
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1.2 Overview of the Dissertation Document

The rest of the document is structured as follows:

Chapter 2 formulates resource allocation in CBDM as a matching problem. The

steps involved in implementing the matching mechanism in CBDM are described. Fur-

ther, three different matching mechanisms are analyzed. Simulation of an illustrative

decentralized additive manufacturing setup is made to compare the efficiency of the

three mechanisms against the FCFS approach. Conclusions are drawn to compare

the efficiency of the three mechanisms in both resource scarce and resource surplus

conditions.

Chapter 3 presents three different scenarios in cloud-based design and manufac-

turing. The strategic behavior of the participants, information, and other interaction

is analyzed and compared for these scenarios. Based on the analysis, the requirements

of an appropriate resource allocation mechanism in the three scenarios are studied.

Matching mechanisms are recommended for each of the three CBDM scenarios based

on how well the properties of the matching mechanism satisfy the requirements in

those scenarios.

In Chapters 2 and3 a one-time only implementation of the matching mechanism

is presented. However, in practice, these matching mechanisms are employed over a

long period of time and would need to be implemented multiple times. It is necessary

to determine the optimal frequency at which these mechanisms are implemented so as

to maximize various matching objectives such as utility attained by the participating

agents, number of successful matches, and fairness in their distribution. In Chapter 4

we study the effect of frequency of implementing mechanisms on the outcome of

matching and propose optimal frequencies as a function of variables that characterize

a CBDM scenario. Some of these variables are the arrival rate of designers, service

rate of manufacturers, average job processing time, number of service providers etc.

In Chapter 4 the frequency recommendations are restricted to a certain idealized

environment with strong assumptions such as deterministic arrival process, constant
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job processing time etc. Some of these assumptions are not valid in real-world appli-

cations. In Chapter 5 we see the effect of relaxing these assumptions on the optimal

matching frequency. We also simulate a stochastic CBDM matching scenario relaxing

all the assumptions to mimic a real-world setting. In the simulation, we study how

the frequency recommendations drawn from the studies generalize into the real-world

environment.

In Chapter 6 we use a discrete game based approach to model the decision-making

behavior of the airlines in the presence of competition. We use airport presence to

evaluate the parameters of the discrete games from historic decisions. The parameters

studied are used to study the preference characteristics of the airlines towards different

explanatory variables.

In Chapter 7 we perform forward simulation to predict the evolution of US ATS.

Prediction accuracies from the forward simulation are compared with actual decisions

and other competing models. The effects of varying the route characteristics on the

evolutionary behavior of the network are studied.
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Table 1.2. : Summary of research questions, approaches, and con-
tributions from this dissertation in CBDM and ATS.

Case
Research
Questions

Research Approach Contributions

CBDM

(RQ1.1) How do
the utilities and

quality of
matches attained
by service seekers

and service
providers by
implementing

existing bipartite
matching

mechanisms
compare against

FCFS under
resource scarce
and resource

abundant
conditions?

Simulation studies were
performed on an illustrative 3D

printing service framework.

• New understanding
on the influence of
resource availability
on existing bipartite
mechanisms;

• Insights on the
effect of resource
scarce and resource
surplus conditions
on the number of
successful matches,
utility attained
from matches by
both the set of
service seekers and
service providers.

(RQ1.2) How can
service seekers be

optimally
matched to

service providers
in different

decentralized
design and

manufacturing
scenarios,

considering the
true preferences

of all agents?

• Compiling the properties
of mechanisms that are
crucial for resource alloca-
tion in CBDM; interpret-
ing the properties in the
context of CBDM;

• Analyzing stakeholder be-
havior and nature of inter-
action in 3 CBDM scenar-
ios;

• Analyzing the major re-
quirements in the scenar-
ios;

• Recommending best
matching mechanisms
for the scenario based
on how the properties of
the mechanism match to
the requirements in the
scenario; some insights
from resource simulation
results by answering
RQ1.1 were also used

Best matching
mechanisms were

recommended for three
CBDM scenarios that
generalizes to a broad
range of applications
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Table 1.2. : Summary of research questions, approaches, and con-
tributions from this dissertation in CBDM and ATS.

(RQ1.3) What is
the optimal
frequency of

implementing
matching

mechanisms so as
to maximize the

matching
objectives such as

service seeker
utility, service

provider utility,
and fairness in

their
distribution?

• Theoretical proposition
for optimal period at
which the matching
mechanisms need to be
implemented under cer-
tain assumptions about
distribution of job pro-
cessing time and service
rate;

• Studying the effect of
relaxing the assumptions
through simulation;

• Validating the approach
by simulating an illustra-
tive CBDM setting to see
how well the results gener-
alize.

• Recommendation
on the optimal
period at which
matching mecha-
nisms should be
implemented given
the four input
conditions: a) job
processing time,
b) service rate, c)
number of service
providers, and
d) arrival rate of
service seekers;

• These results gen-
eralize even in ap-
plications outside of
CBDM.

ATS

(RQ2.1) How do
the airlines make
routing decisions
in the presence of
competition from

other airlines?

Discrete games based model was
used to model the route level
decisions of the airlines. An

airport presence based Bayesian
estimation technique was used
to estimate the parameters of

the discrete games. The data of
historic decisions of two major
airlines, UA and DL, were used
to test the prediction accuracy

of the model.

A model for network
evolution of airlines based

on route-level decisions
made by the airlines under

competition. An airport
presence based approach

to estimate the parameters
of the discrete games.

(RQ2.2) How are
the route decision
strategies of the
airlines affected
by varying the

explanatory
variables such as
market demand
and operating

cost?

Forward simulation on the
decision model of the airlines
created by answering RQ2.1.

Understanding how the
variations in explanatory
variables affect the Nash

equilibria strategies of the
airlines.



20

2. MECHANISM DESIGN APPROACH TO RESOURCE ALLOCATION IN

CBDM

CBDM involves interactions among two groups of participants: service seekers and

service providers. Service seekers need to manufacture or use computational re-

sources, but do not possess the capabilities to do so. Service providers own and op-

erate equipment or other resources and are ready to offer users instantaneous access

to these capabilities. An effective CBDM platform must be able to effectively sup-

port the important tasks of resource discovery, service scheduling, service matching.

Several research efforts have been focused on issues such as resource virtualization

technologies, resource and service publication and discovery [22], service composi-

tion, efficiency [23], reliability and security management [24]. A review of challenges

and research gaps in these emerging manufacturing models is provided by Tao and

co-authors [25].

2.1 Illustrative Example of CBDM: 3D Printing Services

In this section we use a 3D Printing service platform as an illustrative example to

describe the stakeholders and the nature of interaction between them in CBDM.

Additive manufacturing is bridging the gap between designers and manufacturers

by enabling rapid transition of concepts into physical prototypes and final products.

The increasing popularity of additive manufacturing is partly due to the availability

of mid-level consumer grade 3D printers, and access to robust 3D modeling software

for the creation of geometric models.

To serve designers for whom it is economically not viable to own different printers

for their needs, there has been an emergence of service organizations, such as Shape-

ways [10], who own a variety of 3D printing machines. The machines range from
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desktop printers for plastic parts to industrial scale metal printers, giving designers a

myriad of options to choose from based on their needs. Designers can submit geomet-

ric models to these organizations and get them printed at the quoted price. These

organizations typically also offer quality checks and assistance to designers to help

them market and sell their products in return for a commission.

In addition to 3D printing service organizations, an alternate, decentralized sce-

nario exists where designers who do not possess the necessary prototyping resources

are able to connect with independent individuals who own those resources. These

interactions are facilitated by service matching organizations, such as 3D Hubs [7],

where designers upload their 3D models and are able to choose from the available

providers. Machine owners can register their services at these platforms and adver-

tise their printing resources, and designers can avail these services on a FCFS basis

by choosing the machines that best suit their needs. The machine owner completes

the 3D printing task for a price decided based on designer’s requirements.

Service Seeker S1

Utility:
u1(f11(X1)
+f12(X2)+
. . . f14(X4)

Service Seeker S2

Utility:
u2(f21(X1)
+f22(X2)+
. . . f24(X4)

. . .

Service Seeker SN

Utility:
uN (fN1(X1)
+fN2(X2)+
. . . fN4(X4)

Attributes (X)
• X1 :Resolution
• X2 :Delivery time
• X3 :Tensile Strength
• X4 :Accuracy

Service Provider P1

Utility:
v1(g11(X1)
+g12(X2)+
. . . g14(X4)

Service Provider P2

Utility:
v2(g21(X1)
+g22(X2)+
. . . g24(X4)]

. . .

Service Provider PM

Utility:
vM (gM1(X1)
+gM2(X2)+
. . . gM4(X4)

Probability distributions
over attributes by agent (i)
• pi1 :Resolution
• pi2 :Delivery time
• pi3 :Tensile Strength
• pi4 :Accuracy

P2 ← SN

P2 → SN

Expected Utility for SN if matched with P2 :

E[uN (X)|p21:P24]

Expected Utility for P2 if matched with SN :

E[v2(X)|pN1:N4]

Figure 2.1. Matching in decentralized design and 3D printing services.

The scenario is illustrated in Figure 2.1.
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2.1.1 Interacting Agents

There are three main staheholders interacting with one another. They are ser-

vice seeker, service providers, and the individual or organization implementing the

matching mechanism.

In CBDM, the service seekers are designers who are trying to get a job done but

do not possess the resources to get the job done and are seeking the same from the

system. For example, these may be designers who are trying to get their design

parts prototyped but do not possess the machines to do so. The seekers can also be

individual or organization needing computational resources for a task.

Service providers are machine owners who own resources with excess capacity and

are willing to sell the capacity by processing job requests of service seekers. For

example, a manufacture may be an individual owning a CNC machine or production

facility or 3D printer.

The third agent, matching agent, connects the set of service providers to the

set of service seekers. Sometimes the matching agent would overlap with the service

provider. For example, all the resource would be owned by the same organization and

the organization itself would be responsible to create the matching platform. Shape-

ways [10] Depending on the application the objective that the matching platform are

trying to optimize would vary. For example, if all the organization who owns all the

resources are implementing the matching mechanism then their objective would be

only to maximize their profit. On the other hand, if it is a third party that is creating

the matching platform then they would consider optimizing the objectives of both

service providers and service seekers.

2.1.2 Attributes and Preference Characteristics of the Interacting Agents

Each designer and machine owner has different preferences from each other. The

designers’ preferences for machines are based on machine-owner’s attributes such as

resolution, tensile strength, and maximum build size. Resolution is an important at-
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tribute because the quality, detail capability, finish and accuracy of the final printed

part depend on it. The strength of the final part affects its usability as a functional

prototype. The machine-owner preferences are based on design attributes, such as res-

olution requirement, geometric properties, and printing time. Resolution is important

to machine-owners because (i) the machine-owners prefer to fully utilize their reso-

lution capabilities to maximize profits, and (ii) machine-owners may prefer to print

other products in the same run and would consider a particular resolution range as

an ideal match. Geometric properties, such as size, are important because they affect

needs for the machine’s build area.

2.2 Why Use Matching Mechanisms for Resource Allocation in CBDM?

The adoption of additive manufacturing (AM) and other advanced manufacturing

technologies appears to herald a future in which value chains are shorter, smaller,

more localised, more collaborative, and offer significant sustainability benefits [26].

2.2.1 Issues With Conventional Resource Allocation Methods

Conventional resource allocation methods based on multi-objective optimization

are inappropriate for matching resources to service seekers in decentralized scenarios

because they optimize the objective of one party only. The commonly used approach

for matching in decentralized scenarios is a marketplace where service providers dis-

play capabilities and prices at a central location (e.g., on a website), and the service

seekers self-select the providers based on their needs. This is a first-come first-serve

approach (FCFS) because if a service provider’s resource is available, it can be used

by the service seeker who requests it first, and is willing to pay the asking price. Such

a model is adopted in 3Dhubs [7], an online 3D printing service platform with around

25,000 service providers.

In a CBDM setting using FCFS to match service seekers to service providers leads

to several inefficiencies because of the nature of the interacting environment. Firstly,
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the service seekers have to wait indefinitely in a queue if they opted for service from a

highly sought after service provider. There is no effective way of quantifying waiting

time. Even if some heuristics are proposed to quantify such waiting periods, the

service seekers have to make hard decisions such as choosing the trade-off between

high waiting period or lower quality service. This problem is more severe when the

resources are scarce. Secondly, in FCFS service seekers select their most preferred

choice or set of choices. The allocation is made based on these choices in the order of

arrival time. There is no provision to consider the preferences of the service providers.

Service providers are passive agents in this setting who processes service requests of

their allocated jobs. The preferences of the service provider being not explicitly

considered may lead to dissatisfaction among the service providers. For example, a

service provider with a high resolution 3D printer, which is more suitable to print

jobs that demand higher detail capability, may be chosen first by a seeker who does

not need such capability. A major reason for the failure of online B2B markets for

manufacturing back in early 2000s was the dissatisfaction of the service providers [27].

Third, even in cases where two service seekers have first preference for the same service

provider, the utility that each service seeker gains may be significantly different. FCFS

considers only the order of arrival times without considering these utilities. Therefore,

the match obtained from FCFS may not be optimal from the standpoint of the entire

set of participants. Fourth, it is possible for participants to try and “game” the system

by exhibiting strategic behavior, i.e., considering other participants’ objectives and

stating preferences that are different from their true preferences. For example, a

service seeker may consider how much delay would result if he/she seeks the resource

that best matches his/her requirement as there may be several other seekers in the

queue prolonging the response time. When this happens it is not optimal for a

service seeker to state his/her true preferences, but rather based on expectations

about other service seekers’ preferences. Finally, FCFS does not account for the

specific requirements of different organizational scenarios. For example, for a central

service provider organization, such as Shapeways [10], where all the resources are
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owned by the same company and the service seekers are independent designers who are

interested in printing their parts, the objective is to allocate the jobs to the resources

to maximize the total utility gained by the organization. On the other hand, in a

totally decentralized scenario, such as 3Dhubs [7], the utilities of all service providers

and seekers need to be accounted for in the matching algorithm. These two scenarios

present diverse set of challenges.

2.2.2 Why Mechanism Design based Approach

To address the limitations of the FCFS matching mechanism, the central question

addressed in this chapter is: How can service seekers be optimally matched to service

providers in different decentralized design and manufacturing scenarios, considering

the true preferences of all agents? We propose the use of matching theory, which

has been used for different matching problems such as matching students to schools,

kidney donors to patients for transplant, and residents to hospitals. To the best of

our knowledge, this is the first application of matching theory within the CBDM

context. We analyze the applicability of different matching algorithms in different

decentralized design and manufacturing scenarios. The effects of strategic behavior

of participants on the efficiency of the matching are analyzed. We also study the

influence of dynamic entry and exit of agents on the optimality of matches, which

is crucial in a CBDM framework. Finally, we draw insights on the effects of market

thickness and resource availability on these matching algorithms through simulation

studies.

2.3 Steps for Matching

We propose three steps in optimal matching of designers and manufacturers within

the CBDM framework. The steps are shown in Figure 2.2. The first step involves

quantification of preferences of designers and manufacturers using the expected utility

theory [28]. The second step involves ranking of alternatives of each participant based
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on the expected utilities. The third step is to analyze the CBDM scenario and utilize

the matching algorithm based on the most relevant criteria based on interaction,

objectives and private information of agents. These steps are discussed in detail in

Sections 2.3.1 through 2.3.3.

s1,
s2,
. . .

p1,
p2,
. . .

Preference
ordering
of Seeker

Preference
ordering of
Provider

Matching
mechanism

s1 µ(s1)

s2 µ(s2)

si µ(si)

...

︸︷︷︸
Matched pairs

⇔

⇔

⇔

Seeker utility

Provider utility

R
S

RPSeeker

attributes

Provider

attributes

Figure 2.2. The above flow chart summarizes the approach followed.

We consider a set of service seekers (i.e., designers), S = {s1, s2, . . . , s|S|}, availing

manufacturing services from a set of service providers (i.e., manufacturers), P =

{p1, p2, . . . , p|P |}. Service seekers and service providers are collectively referred to

as agents A = S ∪ P and total number of agents |A| = |S| + |P |. Agents in P

constitute the alternative set for agents in S, and vice-versa. Each service provider,

pj, offers a cap on the maximum number of service seekers it can serve, which we

call vacancy denoted by qpj with qpj ≥ 1. We assume that the cap is in terms of the

number of designs a service provider can manufacture, and not the amount of time

the manufacturer is willing to work.
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2.3.1 Quantification of Preferences of Service Seekers and Service Providers

We use the utility-based procedure for quantification of agents’ preferences, as

demonstrated for Fernández et al. [29]. To quantify the preference characteristics

of the agents, the first step is to identify all the attributes that service seekers and

service providers consider while evaluating their preferences. All service seekers in S

value a set of attributes of the service providers in P , e.g., machine resolution and the

attributes of the material offered. Similarly, the service providers in P value certain

service-seeker attributes such as printing time. We represent the union of service

seeker and service provider attributes as X = {X1, X2, . . . , Xn}. In the rest of the

paper, si and pj denote ith service seeker and jth service provider respectively, while

Xk denote the kth attribute.

Based on the preferences for each attribute Xk, service seeker si’s single-attribute

utility functions fki are obtained using standard utility assessment procedures (see [28]

for details). The single attribute utility functions fki are then combined into si’s multi-

attribute utility function, ui. We have ui(X) = u(f1i(X1), f2i(X2), . . . , fni(Xn)). For

illustration, assuming the additive form of the multi-attribute utility function, si’s

utility function is ui(X) =
∑n

k=1wkifki(Xk), where wki is the weight that si associates

to attribute Xk, such that
∑

k wki = 1. Note that each service seeker si ∈ S may

care only about a subset of relevant attributes in the set X. These subsets are

generally different for different agents, particularly between service providers and

service seekers. The weights for those attributes that the agents do not care about

are assigned as zero.

The next step is to define the probability function of the attribute value. For

service seeker si we are interested in the probability function of the attributes of

service provider pj. We represent the pdf of attribute Xk associated with service

provider pj as pkj(Xk). The probability distribution and the multi-attribute utililty

functions are combined to obtain the expected utility that si gains by being matched
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to each of the si’s alternatives pj. For the case of additive multi-attribute utility

functions the following equation is valid for expected utility calculation,

E[uij(X)] =
n∑

k=1

wki

∫
[fkipkj]dx (2.1)

where E[uij(X)] represent the utility of service seeker si for provider pj. Repeating

the same steps for service providers, the expected utility gained by service provider

pj being matched to each of its alternatives si is given by

E[uji(X)] =
n∑

k=1

wkj

∫
[fkjpki]dx (2.2)

In cases where additive independence of attributes is not valid the expected utility

expression is re-formulated. However, a detailed discussion of such special cases is

beyond the scope of this paper. Fernández et al. [29] provide additional insights on

such reformulations for the 3D printing scenario.

2.3.2 Ranking of Alternatives

Based on the expected utilities thus generated, the alternatives for each agent

are rank ordered. Higher the expected utility, lower is the rank. We include the

agent itself in the set of its alternatives. All the alternatives that are unacceptable

to the agent are ranked below the agent. An agent matched to itself represents an

unmatched agent. For example, if the design cannot be printed on any of the available

machines because the volume exceeds the capacity of each machine, then the design

remains unmatched to any of the machines. Therefore, the set of alternatives for a

seeker (si) is the set of providers (P ∪ si), and the set of alternatives for a provider

(pj) is the set of seekers (S ∪ pj).
The ranking of the alternatives of each agent si is represented as Rsi . The prefer-

ence ordering thus generated is assumed to be complete, anti-symmetric and transitive

as utility theory is based on assumption of rational behavior. We define Rs−i as the
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preferences of all service seekers except si and RS as the preference ordering of all

service seekers combined. We have RS = Rs−i ⊗Rsi . Here, ⊗ symbolizes the product

of vector spaces. The preference ordering of each agent is a vector and falls in a vector

space. Preference ordering of a collection of agents falls in product of these vector

space. Similarly, for all service providers, RP = Rp−j ⊗Rpj .

2.3.3 Matching Algorithms

Matching algorithms are aimed at implementing matching mechanisms [30]. In

this paper, we use the words mechanism and algorithm interchangeably. A mechanism

is a mathematical structure that models institutions through which economic activity

is guided and coordinated [31]. A mechanism results in a matching µ : S → P ∪ S
that

(i) assigns each service seeker to an alternative, i.e., ∀si ∈ S : µ(si) ∈ P ∪ si, where

µ(si) is the service provider to which service seekers si is matched and

(ii) implements the matching without exceeding the vacancy of any service provider,

i.e., ∀pi ∈ P : |µ−1(pi)| ≤ qpi ; where µ−1(pi) is the set of service seekers matched

to service provider pi

The best matching mechanism µ∗ matches S and P with the preference profile

R = RS ⊗ RP in the most optimal way. The notion of optimality is based on the

scenario and the desired properties for that scenario.

In the following, we present three different matching mechanisms: Deferred Ac-

ceptance (DA), Top Trading Cycles (TTC), and Munkres’ mechanism.
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Deferred Acceptance (DA) mechanism

The first DA mechanism was proposed by Gale and Shapley [32] as a solution to

the stable marriage problem1. Gusfield [3] discusses the extensions and implications

of this mechanism in detail. This mechanism guarantees a stable matching solution

in finite time. Even 50 years after it was first formulated, DA is still applied in the

National Residency Matching Program [16] where medical residents are assigned to

hospitals based on the preference ordering of both residents and hospitals. It has also

been used in matching workers to firms [34]. Within the service seeker and service

provider context, the mechanism can be used as follows:

Algorithm 1 Deferred Acceptance (DA) mechanism

Set each si ∈ S as unassigned and each pi ∈ P as totally unsubscribed
while(∃pi ∈ P who is undersubscribed) and (∃sk ∈ Rpi not provisionally assigned

to pi) do

1. si is first such sk in Rpi and si is provisionally assigned to pj

2. unassign si from pj and provisionally assign si to pi

3. for each successor pk on Rsi remove pk and si from each other’s list

end while

Top Trading Cycles (TTC) mechanism

TTC was proposed by Shapley and Scarf [35]. TTC has been successfully applied

for kidney exchange [2] and matching students to schools [36]. The matching gener-

ated by TTC enjoys useful properties such as group-strategy proof and efficiency, but

lacks stability (see further details in Section 3.3.2). The mechanism is implemented

in the service matching scenario as follows:

1Extensions of the basic mechanism have been proposed, for example [33]. Here we focus only on
the fundamental mechanism
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Algorithm 2 Top Trading Cycle (TTC) mechanism

Set each si ∈ S as unassigned and each pi ∈ P as totally unsubscribed
while(∃pi ∈ P ) or (∃si ∈ S) do

1. All si ∈ S points to top preferred pj ∈ P and vice-versa;

2. any agent who prefers to remain unmatched points to itself forming self-cycle;

3. each si is allotted the pj it points to and vice-versa;

4. all allotted si are removed and capacity of all allotted pj is reduced by one;

5. remove all pj whose capacity reduces to zero

end while

Munkres’ mechanism

Munkres’ mechanism [37] can optimize the expected utility only for one set of

agents. Unlike TTC and NRMP, Munkres optimizes the absolute value of expected

utility attained by one set of agents. The details of the mechanism are as follows:
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Algorithm 3 Munkres’ mechanism

Populate matrix Bo×o, where o = max(|S|, |P |) such that element bi,j of B represent
utility of si ∈ S for pj ∈ P ; empty cells in the matrix are replaced by the largest
entry

while(the number of lines covering the zero elements equals the number of rows in
matrix B) do

1. For each element in a row subtract the minimum value;

2. repeat the above step for columns;

3. cover each zero in the matrix with minimum lines

4. add the minimum uncovered element to every covered element; if covered twice,
add the minimum element twice

end while
while(either S 6= φ and P 6= φ) do

1. select a matching pair by choosing a set of zeros

2. reduce the capacity of matched manufacturers by one;

3. remove those pj ∈ P whose capacity reduced to zero and remove those si ∈ S
who were matched;

4. repopulate matrix B with the updated S and P ;

end while

2.4 Simulation Results

For the three matching algorithms we simulate an illustrative CBDM scenario and

we do simulation studies to compare the efficiency of the DA, TTC, and Munkres

mechanism mechanism against the FCFS method. We evaluate the performance

under various resource conditions: resource scarce (where resources are scarcer than

the demand for them), resource balanced, and resource surplus.

In the decentralized service seeker-provider scenario, discussed in Section 2.3, there

are Permutation(
∑y

i qpi , x) possible unique matching combinations. The best mech-

anism for a scenario is the one that best satisfies the properties in Table 3.2. In
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Section 3.3, a comparison of the performance of the mechanism is presented based

on various properties. The comparison does not provide information about the ef-

fects of uncertainty, such as uncertainty in the order of arrival of service requests and

preference characteristics. Additionally, the implications of scarcity or abundancy of

resources on the performance of the mechanisms are also not clear based on these

properties. As an example, if resources are abundant such that for every new service

request there is an available slot on the first preferred resource provider then FCFS

would perform well. To analyze the effects of uncertainty and resource availability,

simulation studies are carried out. Simulation results related to the performance of

the mechanisms under scarce, balanced and surplus supply of resource are discussed

in this section.

Two measures are used to compare the efficiency of different mechanisms: (i) av-

erage rank, and (ii) total expected utility. An agent si has rank r if matched to its

rth choice in the agent’s preference ordering. The average rank of designers (manu-

facturers) is obtained by averaging the rank of all designers (manufacturers) matched

using the mechanism. The total expected utility of designers (manufacturers) is ob-

tained by aggregating the utility gained by all the designers (manufacturers) through

the matching mechanism. By definition utility attained by an unmatched designer

is zero. The total utility of a set quantifies the collective performance of the set of

agents, whereas average rank over all realized matches in a set quantifies the extent to

which individual preferences are met. Thus, both these measures are used to evaluate

the performance of different matching mechanisms.

The following three cases of resource availability are simulated:

• resource scarce case, where
∑y

i qpi < x;

• resource balanced case, where
∑y

i qpi = x; and

• resource surplus case, where
∑y

i qpi > x.

As an illustrative scenario, there are 25 designers being matched to 5 manufactur-

ers. Assuming that all manufacturers serve the same number of designers, qpi < 5
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represents a resource scarce case, qpi = 5 is a resource balanced case, and qpi > 5 is

resource surplus. To represent the three cases, simulation results are presented for

qpi = 3, qpi = 5, and qpi = 7 for each manufacturer. The insights drawn are consistent

for other values of qpi as well.

2.4.1 Illustrative Example: 3D printing Service Framework

Consider a scenario where a set of 25 designers (|S| = 25 where service seeker set

S is the set of designers) are seeking services from a set of 5 manufacturers (|P | = 5).

The 25 designs used in this example were downloaded from Thingiverse [38]. Each of

the 5 manufacturers owned one of these five 3D printers: Makerbot 2 (P1), Ultimaker

2 (P2), Witbox (P3), B9 Creator (P4), Form 1+ (P5). First three machines are

FDM (Fusion Deposition Material) machines while the last two are based on the

SLA (StereoLithography) process. Each manufacturer owned materials compatible

with their respective machine. Material data was collected from iMaterialise [39] for

different FDM and SLA materials. Representative images of the designs used are

shown in Figure 2.3.

Figure 2.3. Sample designs used in the illustrative scenario.

The manufacturer attributes concerning the designers are machine volume, ma-

chine resolution, material tensile strength, manufacturer proximity whereas designer

attributes concerning the manufacturers are printing time, material requirement, and

design dimensions. The resolution capabilities of the machines varied from 5 to 100
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microns. Designers could list their job on an urgency scale from 1 to 5. Further the

designers could state their resolution and tensile strength range requirements. The

numerical values used for the design printing time and machine dimension attributes

are listed in Table 2.1.

Table 2.1.
Printing time and design dimensions corresponding to each designer-
manufacturer pair. The machines are numbered from p1 to p5 and 25
designs are numbered from s1 to s25, The 25 designs used in this example
were downloaded from website thingiverse [38]. 3D printers used were
Makerbot 2 (p1), Ultimaker 2 (p2), Witbox (p3), B9 Creator (p4), Form
1+ (p5). Material data was collected from iMaterialise [39]. Empty cells
denote incompatible design-machine pairs.

Printing Time in machine type (hr) area (cm2) vol (cm3)
p1 p2 p3 p4 p5

s1 0.28 0.35 0.40 0.12 0.17 18.6 15.55
s2 0.15 0.13 0.15 0.13 0.15 304.41 94.08
s3 0.13 0.08 0.12 0.25 0.20 407.77 13.44
s4 0.03 0.03 0.05 0.33 0.23 0.62 0.04
s5 2.27 1.77 1.83 0.72 0.70 4.28 11.13
s6 0.75 0.83 1.13 0.97 0.60 23.31 1.06
s7 0.77 1.37 1.07 1.20 0.88 49 28.92
s8 1.93 2.02 2.28 2.15 1.43 13.14 0.67
s9 3.15 3.93 4.90 2.67 1.73 57.5 9.99
s10 6.25 7.67 8.97 3.30 2.40 103.58 26.71
s11 2.25 1.55 1.88 3.68 2.25 74.01 21.23
s12 4.73 6.15 6.85 4.27 2.68 38.36 29.62
s13 9.48 11.28 13.00 4.65 6.25 56.91 199.65
s14 7.73 10.13 11.15 5.13 5.33 1.32 0.42
s15 2.07 1.92 2.00 5.77 56.5 330.65
s16 12.92 16.88 18.52 7.35 8.20 6.25 11.27
s17 2.00 116.91 16.43
s18 3.88 4.10 4.78 0.97 76.42 298.12
s19 3.48 3.62 3.93 1.13 57.3 286.37
s20 11.02 12.50 58.87 55.05
s21 13.82 17.28 19.10 6.65 72.4 77.79
s22 24.87 34.15 43.37 2.3
s23 11.98 12.80 16.92 5.38 99.97 1227.76
s24 10.37 30.98 12.73
s25 48.92 340.62 54.06

Utility functions of individual agents are derived and preference ordering is gener-

ated using the procedure described by Fernández et al. [29]. An example of expected

utility of service seeker (designer) s1 for service provider (manufacturer) p2 is de-

scribed. Service provider s1 preferred the attribute tensile strength with a weight of

0.8 and resolution with a weight of 0.2. The left hand side utility function of designer

s1 for attribute resolution x1 is defined as f11(x1) = −0.003 x1
2 + 0.049 x1 − 0.9446

in the range 22µm < x1 ≤ 60µm, and the right hand side utility defined between

60µm < x1 ≤ 90µm is f11(x1) = −0.0004 x1
2 + 0.0333 x1 + 0.6. For designer s1,
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the single attribute utility for tensile strength varies from 60 MPa to 75 MPa and

the function is given by f12(x2) = −0.001 x2
2 + 0.010 x2 + 1.200. Assuming addi-

tive independence of the attributes, multi-attribute utility function of designer s1 is

u(X) = 0.2f11(x1)+0.8f12(x2). Manufacturer p2 offers resolution between 50 µm and

300 µm and tensile strength between 22 MPa and 41 MPa with uniform probability.

Using these function values the expected utility gained by designer s1 being matched

to manufacturer p2 was calculated as E[u12(X)] = 0.353. Single attribute utility func-

tions of manufacturer p2 were g23(x3) = −0.000 x3
2 + 0.0024 x3 + 0.1975, g21(x1) =

−0.000 x1
2−0.0009 x1+1.052 and g24(x4) = −0.0327 x4

2+0.4327 x2−0.2082. Again

assuming additive independence, multi-attribute utility function for manufacturer p2

is defined as u(X) = 0.375g23(x3) + 0.375g21(x1) + 0.25g24(x4). Using these functions

the expected utility gained by manufacturer p2 being matched to s1 was calculated as

E[u21(X)] = 0.071. Similarly, expected utilities of each agent are calculated for each

of their potential matches. Some of the matches are incompatible, e.g., the design

may not fit in the build envelope of the machine. In such cases, the utility of matching

is zero. Table 2.2 shows the results of expected utilities calculated for each agent for

each alternative.

Based on the expected utilities the designers are matched to manufacturers using

the Munkres, NRMP, TTC, and FCFS mechanisms. The total expected utility gained,

and the average rank of the designers and manufacturers are then calculated for each

mechanism. The utility and rank are dependent on the preferences of the agents.

In FCFS these may also depend on the order of arrival of the service requests. All

the illustrative numerical values listed in Tables 2.1 and 2.2 are for a particular

preference distribution and the order of arrival of the service requests. Thus, there

is variability associated with the performance of the mechanism. To account for

the variability, several combinations of preference distributions were used, and the

results were analyzed statistically. Urgency, resolution and material requirement of

each designer and manufacturer and the relative weightage of these attributes were

randomized for each run. For each random preference distribution so generated,
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Table 2.2.
Expected utility achieved by each agent for each of their alternatives.
Numerical value tabulated in row i and column j indicates the expected
utility achieved by service seeker si being matched to service provider pj
and the entry in bracket indicates the expected utility achieved by pj in
return. ‘-’ represents that the match is not feasible.

Manufacturer
/

Designer
(p1) (p2) (p3) (p4) (p5)

(s1) 0.355 (0.196) 0.353 (0.071) 0.355 (0.313) 0.000 (0.191) 0.004 (0.527)
(s2) 0.000 (0.001) 0.047 (0.001) 0.043 (0.001) - -
(s3) 0.000 (0.001) 0.004 (0.002) 0.000 (0.001) - -
(s4) 0.019 (0.000) 0.004 (0.001) 0.000 (0.000) 0.349 (0.088) 0.000 (0.056)
(s5) 0.000 (0.000) 0.022 (0.001) 0.017 (0.000) 0.470 (0.088) 0.003 (0.000)
(s6) 0.379 (0.196) 0.377 (0.071) 0.379 (0.313) 0.000 (0.197) 0.004 (0.527)
(s7) 0.355 (0.039) 0.453 (0.021) 0.326 (0.063) 0.148 (0.11) 0.129 (0.577)
(s8) 0.233 (0.039) 0.324 (0.021) 0.233 (0.063) 0.094 (0.108) 0.101 (0.576)
(s9) 0.012 (0.000) 0.005 (0.142) 0.000 (0.013) 0.430 (0.091) 0.000 (0.001)
(s10) 0.307 (0.196) 0.283 (0.072) 0.284 (0.314) - 0.000 (0.542)
(S11) 0.612 (0.040) 0.875 (0.021) 0.637 (0.063) 0.246 (0.191) 0.247 (0.577)
(s12) 0.326 (0.097) 0.513 (0.021) 0.386 (0.063) 0.131 (0.315 0.140 (0.520)
(s13) 0.490 (0.040) 0.680 (0.021) 0.490 (0.063) 0.197 (0.256) 0.199 (0.521)
(s14) 0.431 (0.039) 0.567 (0.021) 0.408 (0.063) 0.178 (0.130) 0.161 (0.520)
(s15) 0.016 (0.000) 0.005 (0.001) 0.000 (0.000) 0.385 (0.091) 0.000 (0.001)
(s16) 0.000 (0.000) 0.004 (0.001) 0.000 (0.000) 0.282 (0.088) 0.006 (0.000)
(s17) - 0.053 (0.001) - - 0.009 (0.001)
(s18) 0.031 (0.072) 0.002 (0.170) 0.000 (0.020) - 0.000 (0.016)
(s19) 0.008 (0.000) 0.006 (0.050) 0.000 (0.031) - 0.000 (0.057)
(s20) - 0.629 (0.021) 0.453 (0.063) - 0.179 (0.577)
(s21) 0.000 (0.000) 0.004 (0.001) 0.000 (0.000) - 0.006 (0.001)
(s22) 0.227 (0.196) - 0.287 (0.313) - 0.011 (0.542)
(s23) 0.355 (0.196) 0.353 (0.072) 0.355 (0.314) - 0.004 (0.527)
(s24) - - 0.490 (0.063) - 0.199 (0.520)
(s25) - - 0.350 (0.063) - -

all the four matching mechanisms were implemented and the overall efficiency was

compared.

2.4.2 Influence of Resource Availability

Figures 2.4 through 2.7 show a comparison of the total utility and average rank

by each of the mechanisms under various resource conditions. All the mechanisms

were run for 100 randomly generated preference ordering for each of resource scarce,

resource balance and resource surplus setting. The boxplots of the total utility at-

tained by designers and manufactures under various resource conditions are shown in

Figures 2.4 through 2.6. While Figures 2.4 through 2.6 show total utility, Figure 2.7

shows the average rank attained by designers and manfacturers under resource bal-

anced conditions.
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Figure 2.4. Total expected utility attained by manufacturers and design-
ers in resource scarce case.

Comparing DA and TTC in Figure 2.4, it is observed that the total manufacturer

utility gained by TTC is more than in DA even though a PODA (manufacturer

optimal) mechanism is implemented. This is because PODA guarantees stability and

can operate only in the stable space of solutions. But as the resource availability

increases from scarce to balanced and abundant, the performance of TTC and DA is

nearly similar in terms of the manufacturers’ utilities. This is because the set of stable

solutions grows rapidly as the resources get abundant and the formation of weak and

strong cycles [3] decreases and efficiency of DA matches that of TTC with respect to

manufacturer utility. Thus, in fully decentralized market when demand and supply of

services and resources are balanced, DA performs as well as TTC for manufacturers

even though it operates in the space of stable solutions. In addition DA mechanism

offers stable solutions and hence a mechanism based on DA is the best mechanism in



39

Munkres TTC DA FCFS
0

1

2

3

4

5

6

7

E
xp

ec
te

d
U

ti
lit

y
(M

an
uf

ac
tu

re
rs

)

Balanced (vacancy=5)

Munkres TTC DA FCFS
0

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d
U

ti
lit

y
(D

es
ig

ne
rs

)

Balanced (vacancy=5)

Figure 2.5. Total expected utility attained by manufacturers and design-
ers in resource balanced case.

a totally decentralized CBDM market. The total expected utility of the designers by

implementing TTC or DA increases from resource scarce to resource balanced, but

after that it depends on the set of feasible matchings.

In the case of FCFS, the designer utility grows from resource scarce to resource

surplus as the availability of most preferred manufacturers increases with resource

availability. The average designer rank (see Figure 2.7) of FCFS on the other hand

is better than all other mechanisms. However, this average is only calculated over

the completed matches. In FCFS the number of completed matchings is arbitrary

even for a given instantiation depending on the order of arrival of service requests.

Additionally, FCFS does not have any of the useful properties listed in Table 3.2

Therefore FCFS is not a preferred mechanism in any of the three scenarios discussed.
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Figure 2.6. Total expected utility attained by manufacturers and design-
ers in resource surplus case.

Munkres offers the highest manufacturer utility regardless of scarcity of resources.

But the average rank attained by the manufacturers is better in DA and TTC as com-

pared to Munkres. This is because DA and TTC are based on the ordinal preference

ordering whereas Munkres is based on total cardinal utility attained by the entire

set of agents. The difference between Munkres and TTC, DA is clear particularly in

scarce resource settings.

2.5 Conclusions

The performance of the mechanisms depends on the availability of resources which

in turn is based on the market thickness. However, FCFS is not a preferred mechanism

in any of the three resource scenarios. Total manufacturer utility gained by TTC is
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Figure 2.7. Average rank over completed matches attained by manufac-
turers and designers in resource balanced case.

more than PODA (manufacturer optimal DA) as PODA operates only within the

stable space of solutions limiting its efficiency. This effect is more pronounced in

resource scarce setting. Once resources become more abundant, the set of stable

matching options increases thereby reducing the gap in efficiency between TTC and

DA. Munkres offer higher manufacturer utility than DA and TTC in all three resource

settings. However, the average rank attained by manufacturers is better in DA and

TTC as compared to Munkres.

However, in this chapter the efficiency was quantified based on only the utility

and rank attained by the matched outcomes. In practice, several other properties

become crucial depending on the application. In Chapter 3 we analyze the properties

of DA, TTC, and Munkres mechanism in the context of three specific CBDM scenario.

Based on the analysis of properties and based on the insights drawn from the resource
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simulations shown in this chapter, we recommend best mechanisms to be implemented

in those scenarios.
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3. BEST MATCHING MECHANISM IN CBDM SCENARIO

In this chapter the characteristics of three different CBDM scenarios are studied and

matching mechanism are recommended for the three scenarios. The CBDM scenarios

studied have unique characteristics and generalizes to a wide range of applications.

The properties of the mechanisms are analyzed in the context of the objectives of the

scenario. Based on how well the properties of the mechanism suit the requirements

and objectives of the scenario, recommendations are made for the best mechanisms.

This chapter is structured as follows: Section 3.1 discusses some of the desirable

properties of matching mechanisms in CBDM environment, Section 3.2 describes the

characteristics of three different CBDM scenarios, Section 3.3 formalizes the proper-

ties of suitable matching mechanism, Section 3.4 proposes ideal matching mechanism

in each of three CBDM scenarios based on its properties and the resource simulation

results, and Section 3.5 discusses closing comments and research gaps for future work.

3.1 Desirable Properties of Optimal Bipartite Matching in CBDM

In the last Chapter, in Section 2.3 the steps involved in matching service seekers

(designers) to service providers (manufacturers) were discussed. Based on their pref-

erences, machine owners can rank order the designers; and designers can rank order

the machine owners. Each designer would like to be matched to a machine owner

who is at the top of their rank ordered list. Similarly, each machine owner would like

to be matched to the top designer in his/her list. The match is easy if each machine

owner is at the top of only one designer’s rank ordered list, and each designer is at

the top of only one machine owner’s list. However, this is a very restricting case, and

is generally not true. In real scenarios, many designers may be interested in using

the same 3D printer. Therefore, it is rarely possible for everyone to achieve their first
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preference. Given that some of the participants will not achieve their first preference,

the goal is to match designers and machine owners in a way that is optimal, in some

sense, for the market as a whole.

Since there are multiple decision makers with different objectives, optimality can

be defined in many ways. One possible definition is based on the maximization of

total utility achieved by a set of agents (e.g., the set of all service providers). Such

an optimal matching can be achieved by generalized assignment algorithms, such as

the Munkres algorithm [37]. Such algorithms are appropriate only if the set of agents

belongs to the same organization, and have a collective preference for the entire set.

The algorithm fails when agents in the set are independent and the utilities of both

the service seekers and the providers need to be considered.

In addition to optimality, the match should also have a number of other desirable

properties. First, the matches should be compatible with the preference structures.

For example, there should not be any designer-manufacturer pair, who prefers to be

matched with each other, but are not matched by the CBDM system. If there is

such a pair, then that pair has an incentive to collude outside the CBDM platform.

Second, participants can dynamically enter or exit the system in a decentralized en-

vironment such as CBDM. Therefore, the matching mechanism should be insensitive

to participants entering and leaving the system. For example, if a matched designer-

manufacturer pair leaves the system, there should not be any change in the matches

for the rest of the participants. Third, addition of service providers should only help

the service seekers. Finally, the system should prevent “gaming”, i.e., misrepresenta-

tion of information by individuals (or group of) participants. A matching mechanism

should avoid strategic behavior, which results in the stated preferences being differ-

ent from the true preferences. The matching mechanism should enable participants

to base their preference ordering solely on their true preferences. This is called the

truthful revelation property of the mechanism.

These desirable properties are formally described and quantified in Section 3.3.1.

No matching algorithm can satisfy all these properties. Based on the scenario in
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question, certain properties may be more important than others. For example, the

likelihood of different types of gaming is different depending on the CBDM platform

that the agents are operating on. Therefore, the goal is to find the best possible

matching mechanism depending on the scenario. To achieve this, the first step is to

analyze the possible scenarios. Three broad scenarios are discussed in Section 3.2.

3.2 Typical scenario in CBDM

Consider three representative scenarios covering a broad range of applications: a)

fully decentralized scenario, b) monopolistic scenario, and c) organizational scenario.

The strategic characteristics of the agents on both sides, service seekers (S) and

service providers (P ), are compared for the three scenarios in Table 3.1.

Table 3.1.
Comparison of strategic behavior of agents in the three scenarios.

Scenario Set Size
Service
Seekers
(S)

Service
Providers
(P )

Coalitions

Fully decen-
tralized

|S| > 1, |P | > 1 Strategize Strategize Unlikely

Monopolistic |S| > 1, |P | = 1 Strategize
Not Strate-
gize

No coalition

Organizational |S| > 1, |P | = 1 Strategize
Not Strate-
gize

Likely

Fully Decentralized Scenario

This is a completely decentralized market scenario where independent service

seekers avail services from independent service providers. The service seekers and

providers will be collectively referred to as agents. The service seekers are designers

who do not possess necessary resources to make physical prototypes of their designs,
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and service providers are companies or individuals owning resources such as CNC

machines or 3D printers. It is assumed that each designer and manufacturer is an in-

dependent strategic entity aiming to maximize his/her own payoff. It is also assumed

that each agent can engage in strategic behavior such as revealing preferences that

are different from their true preferences.

The agents may exhibit the following types of strategic behavior: (i) a service

seeker and a provider may sign contracts outside the platform, (ii) a service provider

may manipulate the system by providing false information about their capacity, and

(iii) service seekers may submit manipulated preference characteristics to increase the

probability of matching with the desired or most sought after service providers. The

objectives of the matching algorithm in the fully decentralized scenario are: it should

be immune to the strategic behavior of agents, it should optimize the utility of both

service seeker and provider, the optimal matching should remain the same even if

some agents leave the system once matching is done.

Monopolistic scenario

In this scenario, a single organization (e.g., Shapeways [10]) owns a wide variety of

resources and independent designers avail services from this organization. Designers

submit their design requirements to these companies and get them printed or manu-

factured. In this scenario, the service provider is a single agent or company, which is

also responsible for matching service seekers to the resources. Hence, the organization

does not exhibit strategic behavior. Unlike in the totally decentralized scenario, here

both the resource provider and algorithm implementer is the same agent whose sole

objective is to maximize its utility by matching seekers to the resources.

The objective of an appropriate matching mechanism is only to maximize the

payoff of the organization. The utility gained by the service seekers is not considered

here. The preferences of the service seekers are indirectly accounted for through

customer satisfaction, which is generally a part of the service-provider’s preferences.
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Organizational scenario

This scenario is different in the sense that both service seekers and service providers

belong to the same organization. All the service providers are owned by the same

organization and hence are non-strategic in nature. This scenario can represent stu-

dents of a university availing 3D printing resources of the university to print their

design projects, or designers in a R&D company printing prototypes to validate their

designs.

Service seekers who belong to the same company have a greater incentive to strate-

gize as the information and strategies about service seekers and service providers are

readily available. The probability of strategic coalitions is higher in this scenario as

the agents belong to the same organization. An appropriate matching mechanism

should be strategy-proof to coalition formation. It should also consider the utility

functions of both the service seekers and service providers.

3.3 Evaluation of Matching Mechanisms for CBDM

In this section we describes the properties that we use to compare the mechanisms

against each other. Section 3.3.1 define the properties and describes the meaning of

those properties in CBDM application. In Section 3.3.2 we describe how we compare

the mechanisms using these properties.

3.3.1 Criteria for Evaluation

This section describes the set of criteria relevant to a diverse set of matching

scenarios in CBDM framework. The important criteria include (i) individual ratio-

nality [40], (ii) stability [32], (iii) consistency [41], (iv) resource monotonicity [42], (v)

population monotonicity [43], (vi) strategy proofness [30], (vii) group strategy proof-

ness [30], (viii) Pareto efficiency [40], (ix) absolute majority [44], and (x) effective

cardinal efficiency [45].
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Individual Rationality: A mechanism µ is individually rational if (i) every agent

matched through µ prefers its matched partner over being unmatched, and (ii) there

is no under-utilized service provider who is more preferred by any service seeker than

its match. Here, an under-utilized service provider pj is one who is matched to a lower

number of service seekers than its capacity qpj . Mathematically, individual rationality

can be written as:

(i) ∀si ∈ S, µ(si) �si si

(ii) @si, pj such that pj �si µ(si) and qpj > µ−1(pj)

Practical examples where individual rationality gets violated are: (a) a company,

outsourcing a manufacturing job to the cloud to save time and cost incurred to the

company, matched to a service provider who demands a higher price than carrying

out the job in-house; (b) a service seeker’s requirements exceed the capacities of a

service provider being matched to (e.g., design volume exceeding the build volume

of the 3D-printer owned by the service provider). In all these examples the agent is

better off remaining unmatched. Hence, the matching mechanism should eliminate

those match combinations where individual rationality assumption breaks.

Stability: The mechanism is said to be pairwise stable if it is individually rational

and has no blocking pair. Service seeker si and service provider pj are said to be a

blocking pair in µ if

(i) a different service seeker sk is assigned to pj under the mechanism µ, i.e., µ(sk) =

pj,

(ii) si strictly prefers pj over its assignment, i.e., pj �si µ(si), and

(iii) reciprocally, pj strictly prefers si over its current assignment sk, i.e., si �pj sk

If a mechanism is not stable then there is an incentive for the blocking designer-

manufacturer pair to collude outside the CBDM application platform affecting the

efficiency of the matching process.
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Consistency: The mechanism is consistent if the optimal allocation remains the

same even if some agents leave along with their matched pairs. For a consistent

mechanism µ, if

(i) φ ⊂ S ′ ⊆ S and φ ⊂ P ′ ⊆ P , and

(ii) µ : S → S ∪ P and µ′ : S ′ → P ′ ∪ S ′

then µ(si) = µ(s′i) for all si ∈ S and s′i ∈ S ′; where S ′ and P ′ are the set of

designers and manufacturers who leave the matching mechanism after matching is

performed. CBDM is a dynamic system with large number of agents entering and

leaving the system to seek and provide services. In such a setting, it cannot be

guaranteed that the agents would accept the assignment generated by the platform.

Consistency property ensures that the efficiency of a matching mechanism is not lost

due to dynamic entry and exit of agents.

Monotonicity: The mechanism is called monotone in a bilateral matching if the

welfare of each agent on one side increases (decreases) by addition (removal) of agents

from the other side. If agents on the service provider side are the ones being added or

removed and the welfare achieved by the each service seeker either strictly increases or

decreases, then we call the matching mechanism resource monotone. Mathematically,

if P ′ is a set of service providers different1 from set P , with either P ′ ⊆ P (some

service providers left from original set P ) or P ⊆ P ′ (new service providers joined

the original set P ), then either µRS⊗RP (si) � µRS⊗RP ′ (welfare of all service seekers

decrease from P to P ′) or µRS⊗RP (si) � µRS⊗RP ′ (si) (welfare increase from P to P ′)

for each si ∈ S. Similarly the mechanism is called population monotone if the welfare

of each resource provider is increased (decreased) by the addition (removal) of service

seekers.

For example, consider matching in ‘3DHubs’ [7]. Addition of a new machine into

the mechanism should only help the designers in getting a higher ranked match,

1it can also be the same set of service providers offering a reduced or increased cap on vacancy i.e.,
q′pi
6= qpi
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and addition of a new designer should only increase the number of suitable matches

available to the service provider. Monotonicity ensures that this property holds true

for matching. Monotonicity also provides the added advantage that welfare of each

service seeker increases by adding a new machine, and not just the total welfare of

all service seekers.

Strategy-proof: Mechanism µ is strategy-proof if no single agent is better off mis-

representing the preferences. Agent si would exhibit strategic behavior if µRs−i⊗R′si (si) �si
µRs−i⊗Rsi (si), where R is the real preference structure and R′ is the misrepresented

preference structure. If the rule is immune to such behavior then it is strategy-proof.

Consider the case where agents repeatedly outsource their needs to the CBDM frame-

work. Over time the agents may learn how the matching takes place and the matching

mechanism is susceptible to loss in efficiency due to strategic behavior from the agents.

For example, in FCFS a designer can increase the probability of being matched to

a highly sought after machine owner by switching the first and second choice. The

machine owners could misrepresent the capacity of machines to increase the proba-

bility of getting matched. Hence, there is a need to make the platform immune to

such strategies.

Group Strategy-proof: The mechanism is group strategy-proof if even a coalition of

agents is not better off misrepresenting the preference ordering of all the individuals

in the coalition. Agents in a set S ′(⊆ S) have an incentive to form coalition and

falsify their preference ordering in a rule µ if (i) all agents in set S ′ do not decrease

their welfare by colluding, and (ii) at least one agent strictly increases its welfare.

(i) µRS/S′⊗R′S′ (si) �si µRS(si) ∀si ∈ S ′ and

(ii) µRS/S′⊗R′S′ (si) �si µRS(si) for some sj ∈ S ′

If agents who participate in the matching know each other well then the mechanism

would be susceptible to coalition strategies [3]. In the scenarios discussed this gaming

behavior is probable in the organizational scenario where the agents involved in the

matching process are co-workers.
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Pareto-efficiency: A mechanism µ is Pareto-efficient with respect to a set of agents

if there is no other mechanism µ′ that strictly increases the utility of a subset of agents

keeping the utility of the rest of the agents the same. Rule µ is Pareto efficient with

respect to set S if ∀R @µ′ such that

(i) µ′(si)Rsiµsi ; ∀si ∈ S, and

(ii) ∃sk ∈ S with µ
′
(sk)Pskµsk

Similarly, the definition can be extended to Pareto efficiency with agents of set P .

Mechanism µ is Pareto efficient if it is efficient with respect to both S and P .

Absolute majority: A mechanism is said to satisfy the absolute majority property

if it maximizes the number of agents who are matched to their first choice in their

submitted preference ordering. In many cases, the designers would rate their first

desired manufacturer much above the subsequent ones; they would be indifferent

between second and third choices. Hence, it is always desirable to have a mechanism

that matches the maximum number of agents to their first choice.

Effective cardinal efficiency: For sets S and P , effective cardinal efficiency is the

total expected utility achieved by each agent in sets S and M respectively.

3.3.2 Using the Criteria to Compare the Mechanisms for the CBDM

problem

Table 3.2 shows competing properties while implementing mechanism design for

decentralized design and manufacturing in a strategic setting. There is no universal

mechanism that satisfies all these properties. For example, no mechanism is both

stable and efficient [40]. However, depending on the scenario, the mechanism that

has the properties most relevant to the scenario in concern can be chosen.

DA mechanism can be implemented in two ways, based on the set of agents that

proposes [3]. DA mechanism has the property that it is optimal with respect to

the agents who propose during its implementation. Thus, if the service providers
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Table 3.2.
Comparison of mechanisms in terms of its properties.

Criterion DA TTC Munkers

Individual rationality 3 3 3

Stable 3 if strongly acyclic 7

Resource monotone if weakly acyclic if strongly acyclic 7

Population monotonic if weakly acyclic if strongly acyclic 7

Consistency if weakly acyclic if strongly acyclic 7

Strategy-proof 3 3 3

Group-strategy proof if weakly acyclic 3 7

Pareto efficiency if weakly acyclic 3 3

Absolute majority 7 7 7

Effective cardinal efficiency 7 7 3

in P propose, then it is P -optimal, whereas if the seekers propose then it is S-

optimal. The former provides the optimal stable matching for agents of set P whereas

the latter results in optimal matches for agents in set S. In the rest of the paper,

these mechanisms are labeled PODA (Provider Optimal DA) and SODA (Seeker

Optimal DA) respectively. In addition to being P -optimal, PODA is strategy-proof

with respect to agents in P however agents in S can strategize. Similarly, SODA is

strategy-proof only with respect to agents in S. Thus PODA is not group-strategy

proof with agents in S. Kojima [46] shows that PODA is not group-strategy proof if

there is at least one pi ∈ P with qpi > 1. In such cases one can generate scenarios

where agents in P can manipulate via misreporting vacancies or being involved in

prearranged matches outside the application platform.

DA always produces stable matching. It is resource monotonic and population

monotonic but not always consistent. Although DA Pareto dominates any other

stable allocation, it is not optimal. Also, DA is strategy proof but not group-strategy

proof. Whereas TTC is efficient and group-strategy proof but lacks consistency and

is not resource and population monotone.

Unlike TTC and DA which only account for the ordinal ranking of the preference

ordering, Munkres mechanism maximizes the cardinal value of total expected util-



53

ity for a set. Hence, when the aim is to maximize expected utility of non-strategic

agents belonging to the same set (either S or P ) then Munkres is the best choice. For

example, organizations such as Shapeways can adopt Munkres mechanism to match

the uploaded designs to the right machines. But it breaks down in 3Dhubs where

the individuals agents in either set are utility maximizing strategic agents. Moreover,

Munkres mechanism is not population monotone, resource monotone, consistent, sta-

ble and strategy proof. In a bipartite matching situation the utility of the two sets

of agents needs to be maximized. Munkres can optimize only a single set at a time.

3.4 Evaluation of Matching Mechanisms for the Three Scenarios

Based on critical analysis of the properties of the mechanisms and their perfor-

mance under various resource conditions the best mechanisms for the three scenarios

are listed in Table 3.3. For the monopolistic scenario, the best mechanism is the

one based on the Munkres mechanism. From Figures 2.4 to 2.6, it is observed that

total expected utility attained by set of manufacturers is maximum for the Munkres

mechanism, irrespective of availability of resources. In monopolistic scenario the com-

pany who owns all the resources is in charge of carrying out the matching process.

Monopolist will try to maximize its utility and hence would resort to the Munkres

mechanism.

In two-sided strategic scenario DA is the most suited mechanism in the case of

totally decentralized scenario despite the lower efficiency compared to TTC. This is

because it offers useful properties such as consistency, resource and population mono-

tonicity, and stability. Balinski and Sonmez [40] show that if DA is not consistent for

a problem, then TTC is not consistent for it either; the converse is not true. Similarly

if DA fails to be stable, TTC also fails; but the converse is not true. Resource mono-

tone and population monotone means even if some service providers or service seekers

(or both) leave after the final matching allotments are declared, the solution for the

reduced set of agents remains the same. This is highly possible in totally decentral-
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Table 3.3.
Relevant properties and best mechanisms for the three scenarios.

Scenario Relevant properties Best mechanism

Totally de-
centralized

Strategy proof, stable, Resource
monotonic, Population monotonic,
consistent, individually rational, bi-
lateral utility

PODA

Monopolistic efficiency, cardinally optimal Munkres

Organizational
group-strategy proof, bilateral util-
ity, efficiency

Top-Trading Cycle

ized scenario with independent strategic agent being the stakeholders. Consistency

of the DA mechanism ensures that the most optimal matching remains unchanged

even if some agents leave the system. Resource and population monotone nature of

DA ensures fairness even if some service seekers or providers leave. Finally, there is

evidence from real world applications [16] which shows that stable mechanisms often

succeed over unstable ones. Balinski and Sonmez [40] highlight this by stating that

if one needs to consider both stable and optimal solutions then DA ranks ahead of

TTC.

Now that we have rated DA over TTC in this scenario, still we need to choose

among the two types of DA (i.e., SODA and PODA). SODA is strategy-proof with

respect to agents in S, i.e., the designers, while PODA is strategy proof with respect to

manufacturers only. Manufacturers have a higher probability to behave strategically

because unlike designers, manufacturers can strategize both by capacity manipulation

and outside settlement. Additionally, manufacturers are repeatedly involved and have

more learning effect than designers. Hence we propose the use of PODA over SODA

to make it strategy-proof with respect to the manufacturers. Further, we rule out

FCFS and Munkres in this scenario as it takes care of only one set of agents and
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do not offer properties such as stability and consistency, which are important in a

dynamic environment.

In an organizational scenario, we need to enforce a canonical response2 unlike

totally decentralized scenario. For example, students using 3D-printing resources in

a university can group-strategize to gain unfair advantage. Therefore, in addition to

optimizing the preferences of both sets of agents, the mechanism needs to be group-

strategy proof as the system is more prone to coalition strategies. Therefore, the

mechanism based on TTC is best suited in this scenario.

3.5 Closing Comments

There is no single best matching mechanism for all scenarios. Depending on the

strategic behavior and resource availability the right mechanism should be imple-

mented. If the objective is to maximize the utility of a single monopolistic resource

provider then Munkres is the best mechanism. When the preference ordering of both

service seekers and providers need to be considered TTC and DA perform better.

In a totally decentralized scenario, where stable solutions are important, DA is the

best mechanism. In an organizational scenario such as students using 3D printing

resources in a university, TTC is the best mechanism. Table 3.3 summarizes the gen-

eral approach and mechanism for the three scenarios considered in this paper. The

performance of the mechanisms also depends on the availability of resources which

in turn is based on the market thickness. Hence, the insights drawn from the simu-

lations can also be used to choose appropriate mechanism based on the frequency of

matching and the type of the scenario.

There are several mechanism design related issues specific to CBDM for further

investigation. First, the present analysis is based on the assumption that agents

are substitutes and not complements. But CBDM is about integrating collective

resources to get the manufacturing task done. Thus, manufacturing resources may

2the response depends only on the individual’s preference characteristics and rules of the mechanism
and is not influenced by strategies and preferences of other agents.
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become complements depending on the needs of the service seeker. Second, resource

discovery is a challenging task in CBDM. It may be impossible for all agents to

provide an exhaustive list of their alternatives. The agents are better off revealing

the preference characteristics towards attributes. There is a need to design strategy

proof mechanisms when agents reveal attribute preferences instead of alternatives.

This is because many properties of the mechanisms change when preferences are

revealed as attributes and not as alternatives. Third, CBDM involves exchange of

transferable utility such as money. This assumption has been relaxed in the analysis.

Fourth, the resources may not be perfectly divisible. For example, in the NRMP

application, when medical residents are matched to hospitals there is a fixed vacancy

to be filled. But in CBDM a few resource owners may be willing to manufacture the

product for pre-determined amount of time and for the available time the resource can

be divided among multiple service seekers. Thus, the matching problem in CBDM is

unique as compared to the previous applications of the matching mechanisms. These

differences bring in new challenges. As an example, when resources are not perfect

substitutes there will not exist any stable matching.
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4. OPTIMAL MATCHING FREQUENCY OF MULTI-PERIOD MATCHING

MECHANISMS

Matching markets such as CBDM in addition to being two-sided are also real-time

in nature as there is a continuous stream of service providers and service seekers

entering and exiting the system. Service providers such as machine owners enter the

system when they have extra capacity to receive new orders and exit the system as

they are assigned new service orders and re-enter the system after they process the

assigned service request. New designers (or service seekers) who needs to get their

parts manufactured come and exit out of the system once they get matched or if they

do not find any acceptable manufacturers in the system.

A central issue in resource allocation in such real-time markets where agents inter-

act over a long period of time is scheduling of the allocation mechanism. In Chapter 3

we proposed DA as the most optimal mechanism in two-sided total decentralized mar-

ket settings. Now, if DA matching mechanism is employed for resource allocation it

needs to be implemented repeatedly over multiple matching cycles. There is a need

to tune the frequency at which the matching mechanism is implemented so as to opti-

mize various matching objectives such as utility attained by the participating agents,

fairness in their distribution, and number of successful matches.

The interval at which the matching mechanism is implemented is called matching

period. It is the length of the matching cycle. Higher the matching period lower

the frequency of implementation of matching mechanism. In this chapter, we aim to

study the design of optimal period of matching mechanism.
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4.1 Literature Review and Research Gap

Existing literature provides mechanisms that satisfy useful properties such as sta-

bility in a single matching cycle, but they lack studies on the effect of the period of

matching cycle on the optimality.

4.1.1 Deficiency of conventional resource allocation mechanisms

Conventional resource allocation methods are inappropriate for matching resources

to service seekers in decentralized scenarios because the designer of the algorithm

makes implicit assumptions that the participating agents will act as instructed. With

the emergence of distributed and cloud-based manufacturing with independent re-

source providers, this assumption is no longer valid. It is more reasonable to assume

that each participating agent will manipulate preferences for selfish gains at the cost

of efficiency of the mechanism. The field of ‘mechanism design’studies on designing

algorithms where agents act rationally. The misrepresentation of information by in-

dividuals (or group of) is called ‘strategic behavior’and the mechanisms that penalize

such behavior are said to be ‘strategic-proof’ [30]. Efficiency loss because of strategic

behavior need not be small and the cost of not having a strategy-proof mechanism is

much harder to measure.

In addition to strategy-proofness, other useful properties of mechanisms include

stability [32], individual rationality [40], consistency [41], monotonicity with respect

to demand [43], and supply [42]. There is no mechanism that satisfies all these prop-

erties [40]. Therefore, mechanism must be specifically designed for each application.

In an earlier work, the authors, modeled the problem of resource allocation in CBDM

as a bipartite matching problem [47] and proposed best matching mechanisms [48]

among existing mechanisms in different CBDM scenarios by analyzing their properties

in the context of requirements in different CBDM scenarios. However, in a stochastic

environment like CBDM where the arrival of service seekers and availability of service

providers is a continuous process there are no studies on the optimal frequency of im-
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plementation of such mechanisms. Therefore, additional advances need to be made on

existing mechanism design literature to develop optimal matching mechanism suited

for the requirements of CBDM.

4.1.2 Why not job scheduling algorithms?

Job scheduling literatures studies the timing of jobs to optimize objectives such as

total cost, total utility, and total project tim while allocating resources in a stochas-

tic environment. For example, Smith [12] proposed a job scheduling algorithm for a

single machine. However, they assumed that the mechanism is centralized with com-

plete information on all the jobs, their significance, and processing time. Anderson

and Potts [13] extended it to a scenario where the algorithm does not have access to

complete knowledge of all the jobs. In all the above job scheduling algorithms, the

designer of the algorithm makes implicit assumptions that the participating agents

will act as instructed. Nisan and Ronen [14] proposed a job-scheduling algorithm

that accounts for the strategic behavior of the participants. Heydenreich et al. [15]

extended this idea to a strategic setting where the participants may manipulate the

job processing time, arrival time of job, and the cost of waiting time. However the

resulting mechanism is not decentralized and the equilibrium of the game is a my-

opic best response based (a weaker condition than Dominant strategy equilibrium).

Christodoulou et al. [49] extended the LP-relaxation job scheduling problem into a

mechanism design framework to also account for the strategic behavior of the partic-

ipants. Jain et al. [50] developed an algorithm for allocating jobs in the cloud which

is truthful-in-expectation which is primarily suited for cloud computing applications.

Andelman et al. [51] showed a Fully Polynomial Time Approximation Scheme algo-

rithm for scheduling jobs on a fixed number of machines that elicit truthful revelation

with the goal of minimizing overall completion time.

In all of the job-scheduling algorithms the focus is only on optimizing some global

objective function such as overall completion time or cost and they ignore individual
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objectives of the independent agents. Moreover, they do not have useful properties

such as stability, individual rationality, and consistency.

4.1.3 Research gap

In job-scheduling literature, the focus is only on optimizing some global objective

function while ignoring important properties such as stability, individual rationality,

and consistency. The field of mechanism design focuses on designing mechanisms

that have useful properties, but they lack studies on the optimal frequency of imple-

mentation of such mechanisms. In situations where agents repeatedly interact with

one another, manipulations and strategic behavior are much more probable because

of the knowledge about historic data. Therefore, there is a need to identify optimal

frequency of implementation of mechanisms so that they satisfy useful properties and

produces optimal matches when implemented in situations where agents repeatedly

interact with one another over long periods of time.

To address this gap the central research question in this chapter is: what is the

optimal period of matching for a given service arrival rates considering matching

objectives such as average utility attained, number of successful matches and fairness

in the distribution of utility? We use simulation studies on a synthetic CBDM scenario

to identify the optimal period of matching for various arrival rate of designers and

perform Sobol sensitivity index [52] to study the robustness of the design period to

the variabilities in the seeker arrival rate and availability of providers.

4.2 Modeling Resource Allocation in CBDM as a Stochastic Matching

Problem

We model CBDM as a resource allocation problem, where service seekers (S)

avail manufacturing resources from service providers (P ). The sets of service seekers,

and service providers are denoted by S = {s1.s2...., s|S|}, and P = {p1, p2...., p|P |}
respectively. Service seekers and providers will be collectively referred to as agents.
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The set of service seekers constitute the alternative set of service providers and vice-

versa. Together, they form a bipartite set, and the resource allocation problem is

formulated as a bipartite matching problem.

The first step in matching involves quantification of preferences of seekers and

providers using the expected utility theory [28]. The next step is to generate the

preference rank ordering of alternatives for each participant based on the expected

utilities. The matching algorithm is then implemented to match the service seekers

to the most suited service providers. This is called a single-period matching. The

steps involved in single-period matching have been discussed in Section 2.3.1.

In a stochastic environment, where the service seekers and providers arrive and

exit the system as a continuous process over a long period of time (T ) the matching

mechanism needs to be implemented multiple times. The mechanism is implemented

recursively after every fixed interval of time, tdesign. The recursive implementation

of the single-period matching after every fixed interval of time is called multi-period

matching. The interval between two successive implementations of the matching

mechanism is referred to as a matching cycle. During this period new service seek-

ers place their service requests, the service providers complete their jobs assigned

in previous cycle and become available. A suitable designed matching period tdesign

optimizes the outcome of the mechanism. Section 4.2.1 elaborates the modeling of

multi-period matching in CBDM and Section 4.2.2 describes multi-period implemen-

tation of matching mechanisms.

4.2.1 Stochastic Modeling of Multi-period Matching Scenario

The demand for service and availability of resources determine the market thick-

ness in CBDM. Both arrivals of service requests and processing of services are mod-

eled as stochastic processes. This section describes the modeling of these stochastic

processes.
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Arrival of Service Seekers

The stochastic arrival of service seekers is modeled as a Poisson process with

mean arrival rate λ. We chose a Poisson process to model the number of service

seekers because (a) Poisson distribution models discrete events that occur in a finite

and continuous interval of time, and (b) service seekers arrive from a wide range of

sources independent of one another. This assumption is valid in a totally decentralized

scenario where there is a large number of independent designers or groups of designers

trying to get their parts printed or manufactured. The sources are designers or groups

of designers trying to get their parts printed or manufactured. They are independent

because the arrival time of a designer does not depend on the arrival time of other

designers in the system. The set of service seekers on kth matching cycle is denoted

as Sk. The probability density function π(|Sk|) over number of service seekers |Sk| is

given by Equation (4.1).

π(|Sk|) =
e−λλ|Sk|

|Sk|!
(4.1)

The mean arrival rate (λ) is a characteristic of the target population on which

the mechanism will be implemented. The higher the demand for cloud-based services

higher the value of (λ). The mean arrival rate varies from one setting to the next. The

demand cannot be controlled by the mechanism designer. The goal is to design the

matching period (t) for a given demand (or arrival rate λ) of the target population.

Availability of Service Providers

The set of service providers who are available on the kth matching cycle is denoted

by Sk; we have Sk ⊆ S. The availability of service provider pj in a matching period

depends on the complexity of the job assigned to them in the previous periods, the

type of manufacturing resource they possess, and their average working time in a

day (hj). The complexity of the job depends on factors such as resolution require-

ment, design dimensions, detail capability etc. The complexity of service request
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(of the service seeker si that he/she got matched to) and the type of manufacturing

resource (possessed by service provider pj) determine the service time (τij) needed

for processing a request. For example, a service provider with a machine that uses

a Stereolithography (SLA) process can print a design faster than a service provider

possessing a machine that uses Fused Deposition Modeling (FDM) printing process.

Comparison of the printing time required for 100 representative designs for various 3D

printing processes and machines are discussed in further detail in Section 5.2.2. We

assume that each service provider is available in a matching cycle if he/she completes

the previous service request in the preceding matching cycles.
τij
hjt

is the number of

matching cycles after which service seeker pj is available after being matched to ser-

vice seeker si. A service provider who is able to meet the service requirements faster

is more available and therefore derives more utility during the matching duration T

by being available on a higher number of matching cycles.

4.2.2 Multi-period implementation of Matching Mechanisms

In Chapter 3 it was shown that the Deferred Acceptance (DA) algorithm is the

most suited matching mechanism in a totally decentralized design and manufactur-

ing setting due to its properties such as stability, individual rationality, consistency,

immunity to gaming behavior of the participating agents, monotonicity with respect

to demand, and supply. Now, we extend this matching mechanism into a multi-

period setting and determine the optimal period of implementation of the mechanism

(t). The extension of the DA mechanism in a multi-period setting is described in

Algorithm 4.
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Algorithm 4 multi-period DA mechanism

Set availi = 1 ∀ pi ∈ P
for (time← t to T step t) do

if(time is t) then
Set each pi ∈ P as unassigned;

else
Unassign those pi ∈ P who have availi = 1

end
while (∃pi ∈ P unassigned) and (∃sk ∈ Rpi not assigned to pi) do
si is first such sk in Rpi and si is provisionally assigned to pj

unassign si from pj and assign si to pi
for each successor pk on Rsi remove pk and si from each other’s list

end
Set availi = 0 for all pi in P who is assigned a seeker in this matching cycle
Set availi = 1 for those pi who completed previous assignment

textbfend

4.3 Analyzing the Effects of Matching Period

The period of matching (which is inverse of matching frequency) is designed de-

pending on the characteristics of the scenario to which the matching mechanism

is applied. Section 4.3.1 describes the main variables that characterize a target sce-

nario. Efficiency of the matching mechanism is quantified based on several objectives.

No matching mechanism uniquely optimizes all the objectives. Objectives that are

important will differ from scenario to scenario. For example while fairness in the

distribution of outcomes will be more important in a particular scenario, cumulative

utility attained by all the service providers might be the most important one in an-

other setting. Section 4.3.2 details the objectives considered and the metric used to

assess them in our analysis.

Figure 4.1 illustrates the mechanism design model, the key variables in the in-

puts, and the metrics that quantifies the outcomes of the matching mechanism. Sec-

tion 4.3.1 discusses the inputs to the model in detail. The inputs characterizes the
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application onto which the matching mechanism needs to be applied. Section 4.3.2

describes the metrics used to evaluate the efficiency of the matching mechanism. We

propose optimal matching period in two different supply demand settings. Subsec-

tion 4.3.3 describes these two settings.

Mechanism Design Problem

Service 
Seeker

Service 
Provider

Mean Provider UtilityArrival process
(D/M)

Service Time
(𝜏)

Service Rate
(𝜇)

|P|

1) Matching 
Mechanism

2) Design 
Period 
𝒕𝒅𝒆𝒔𝒊𝒈𝒏

Total Seeker Utility

Successful Matches (#)

Distribution of utility

Speed Working hours 
ℎ

Dimensions Resolution

Arrival rate (𝜆)

Scenario Characteristics / Input Objectives / Output

Mechanism Design Problem

Figure 4.1. Block diagram illustrating the inputs and outputs of the
mechanism design model.

4.3.1 Modeling the Stochastic Matching Scenario

The key variables that are altered to study the effect of matching frequency are:

a) the arrival characteristics, b) the service characteristics, and c) the nature of in-

teraction between service seekers and providers.
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a) The arrival characteristics consists of the (i) arrival process of the service

seekers, (ii) the mean rate of arrival (λ), and (iii) the complexity of the jobs that the

service seekers are trying to print. (i) The arrival process is either deterministic or

stochastic. Deterministic arrival indicates constant rate of arrival with time whereas

Poisson arrival is changing with respect to time where the fluctuation is modeled by

a Poisson process. Though deterministic arrival process might not mimic any real-

world resource allocation application, it provides insights on the impact of matching

period on the efficiency of matching outcome as a function of other input variables.

In Chapter 5 we analyze the effect of relaxing this deterministic assumption. (ii)

The mean rate of arrival indicates the average number of service requests per unit

time. This is a characteristic of the population. A high arrival rate indicate that the

demand is high in the target population. (iii) The complexity of the jobs depends on

the size of the part that needs to be manufactured, the resolution requirements, detail

capability etc. The mean arrival rate and job complexity together characterizes the

demand in the population. A high arrival rate and a high job complexity represents

a high demand.

b) The service characteristics consist of: (i) the number of service providers

(|P |), (ii) the service rate (µ). The service rate depends on the speed at which

the manufacturer processes the job, and the working time of the manufacturer (h).

The speed is primarily a characteristic of the machine. The speed at which the

manufacturer processes the job or equivalently how fast the job is printed in the 3D

printer. For example 3D printers based on Stereolithography (SLA) printing process

prints the same job with same dimensions and part complexity faster than the ones

based on Fusion Deposition Modeling (FDM). The working time (h) is decided by the

machine owner depending on the availability and excess resource capability. Service

rate is a combination of both these factors. A high µj indicate high service rate for

service provider pj.

c) the nature of interaction between service seekers and providers con-

sists of (i) the distribution of utility that the service seekers and provider gain by
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being matched, and (ii) the distribution of service (τij) to prototype design i in ma-

chine j. (i) The distribution of the utility that the provider gains from being matched

to a service seeker and vice-versa determines the level of compatibility, diversity in

design, and resource choices. The utility is modeled to lie between 0 and 1 with 0

being the lowest and 1 the highest utility attainable. If all seeker gain utility 1 being

matched to any service provider and vice-versa then this means that all the job re-

quests can be completed in any of the service provider machine and the providers are

invariant between the jobs they are matched to. If the distribution is binomial with

a parameter close to 0 then this indicates that most of machines are incompatible to

prototype the service request. In the analysis effects of various distribution of utility

such as Binomial, Beta, Uniform is studied. (ii) The complexity of the job request

by the service seeker and the speed of the machine that the service provider possess

combine to determine the job time for that seeker manufacturer pair. In practice, the

printing time is exponentially distributed for each service provider with a parameter

that is characteristic of the machine. The distribution is exponential because there

will be a small number of designs that needs really large printing time and most of

the designs need a low printing time. The parameter of the exponential distribution

is characteristic of the machine. A faster machine will have lower mean printing time

for all the designs in the population.

4.3.2 Evaluating the Outcome of the Mechanism

We define an optimal matching mechanism based on four different objectives: a)

number of successful matches, b) total expected utility attained by the entire set

of manufacturers (denoted by EUP ), c) total expected utility attained by the set

of designers (denoted by EUS), and d) fairness in the distribution of utility among
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service providers (denoted by σEUP ). The total expected utility attained by the set

of manufacturers is

EUP (tk) =

|Pk|∑

j=1

E[uji]1M−1 where,




1M−1 = 1, M−1

pj
(tk) ∈ Sk

1M−1 = 0, otherwise

(4.2)

The total expected utility attained by set of designers is

EUS(tk) =

|Sk|∑

i=1

E[uij]1M where,




1M = 1 Msi(tk) ∈ Pk

1M = 0 otherwise

(4.3)

We use standard deviation of the utility distribution among the service providers as

a measure of fairness in their distribution. For kth matching the standard deviation

in utility distribution among the service providers in that cycle (|Pk|) is expressed as

Equation (4.4).

σEUP (tk) =

|Pk|∑

j=1

((
E[uji]−

EUp(tk)

|Pk|
)2
1M−1

)
(4.4)

The matching mechanisms are implemented over a total duration T . The objec-

tives are assessed by calculating the cumulative over the entire matching duration as

shown in Equation (4.5). In Equation (4.5), Oi indicates the measure of objective

O at ith matching cycle and
⌊
T
t

⌋
is the total number of matching cycles. Here, bc

denotes floor function. O is one of either EUP , EUS, σEUP , the fraction of successful

matches depending on the objective of the mechanism we consider for efficiency.

O =

bTt c∑

i=1

Oi (4.5)
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4.3.3 Two supply-demand settings

We present analytic results for optimal matching frequency in two different supply-

demand settings. This section describes the two different supply-demand settings.

The product of the number of service providers |P | and the rate at which they

offer service µ represents the supply of resources in the population. The product of

rate of arrival of service seekers λ and the average job-processing time τ represents

the demand for services in the population. When demand is lower than supply we

refer to it as low supply (LS) setting and otherwise we refer it it as high supply (HS)

setting. Equation 4.6 shows this in mathematical notation.

HS : |P |µ ≥ λτ

LS : |P |µ < λτ
(4.6)

Therefore, the goal is to optimize the matching period for a given demand and

supply. Demand depends on the arrival rate of service seekers, arrival process, and

the printing time to process the service requests. Supply depends on the number of

service providers offering service, their availability, and service speed. We study the

effect of matching period on multi-period Munkres, DA, and TTC algorithms. The

results showing the effect of matching period on each of the four objectives are shown

in Sections 4.4 and 4.5. Section 4.4 discusses the results in HS setting and Section 4.5

discusses the results in LS setting.

4.4 Optimal matching period under high supply setting

In this section we consider the HS setting when the supply is higher than demand

as defined in Section 4.3.3. In HS, we have λτ ≤ |P |µ. Here, |P | is the number of

service providers and µ is their service rate. λ is the rate of arrival of service seekers

into the system and τ is their average job-processing time.
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We had considered four objective in designing optimal matching period as defined

in Section 4.3.2. For the objective number of successful matches, we propose the

following theorem in HS setting.

Theorem 1: If |P |µ ≥ λτ with deterministic arrival of service seekers with arrival

rate λ, a constant job processing time τ and a constant service rate µ, then the total

number of matches for a given matching period t over a total matching duration T is

given by

No. of matches =





T
|P |/λ

, if t ≤ |P |
λ

T
t
, if t > |P |

λ

(4.7)

where, |P | is the number of service providers and λ is the rate of arrival of the service

seeker.

Proof: We consider three separate cases

Case 1: τ
µ
≤ t ≤ |P |

λ

At every time-interval t, λt service seekers enter the system

Since t ≥ τ
µ
, each service provider completes the assigned task in the same matching

cycle in which it was assigned. As a result, all P service providers are available in

every matching cycle.Thus, Pi = P where Pi is the number of service providers in ith

matching cycle.

All the λt service seekers gets matched as λt ≤ |Pi| and every match is perfectly com-

patible with utility 1. The mean utility attained by service providers in ith matching

cycle EUP = λt
|P | . Mean utility attained over the entire matching duration T is given

by

EUP (t) = EUP
T

t
=

T
|P |/λ

when
τ

µ
≤ t ≤ |P |

λ

Case 2: t < τ
µ

At every t interval λt seekers arrive. λt ≤ |P | but not necessarily |Pi| as now not all



71

providers are available in every matching cycle since µt < τ . The service providers

take τ
µt

number of matching cycles to complete the matched service task.

We have |P |
τ/µt

number of service providers available in each matching cycle.

|Pi| = |P |
τ/µt
≥ |P |
|P |/λt

= λt.

Therefore, |Pi| ≥ λt. As a result all λt service seekers gets matched in each matching

cycle. Following the procedure similar to Case 1, we obtain

EUP (t) =
T
|P |/λ

when t <
τ

µ

Case 3: t > |P |
λ

Since t > |P |
λ
≥ τ

µ
, we have Pi = P ∀i. Now number of service seekers exceeds the

number of service providers in every matching cycle. As a result |P | service seekers

among the λt total gets matched in every matching cycle.

EUP = 1 Mean utility attained over the entire matching duration T is given by

EUP (t) =
T

t
when t >

|P |
λ

In Theorem 1 we expressed one of the matching objectives as a function of match-

ing period. However, we had four objectives to consider to design the optimal match-

ing period. In Sections 4.4.1 and 4.4.2 we analyze the effect of matching period on the

other objectives under certain assumptions about the distribution of utility attained

by agents being matched.

4.4.1 Binary Utility Setting

In this section we evaluate the matching objectives as a function of matching

period assuming that the utility on being matched is binomially distributed in the

population. The binomial parameter is denoted by α. α indicates the fraction of
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successful matches in the target population. For a randomly drawn service seeker

service provider pair, the utility of being matched is 1 with probability α and is 0

with probability 1 − α. Thus the utility is either 0 or 11. A utility of 1 indicates a

compatible pair and 0 indicates a non-compatible pair. In applications such as Kidney

Exchange where the donor and receivers are either compatible or incompatible the

utility can be modeled using this assumption. In distributed manufacturing the utility

can be modeled as a binary variable where utility is 1 if the design can be printed in

a machine and 0 otherwise.

We begin by the most simplistic case where the binomial parameter is unity (α =

1). This means that any service seeker or service provider upon being matched to any

of their alternatives attains a utility of 1. This represents a situation where the service

providers are invariant to the service seeker they are being matched to and the service

seeker do not differentiate the service provide that processes their service request as

long as it is processed. Every service request can be processed in any machine and

the designer attains identical utility. Similarly, the machine owner attains identical

utility on processing service request of any designer he/she is matched to.

If any service provider or service seeker attains a utility of 1 upon being matched,

then the total service provider utility and the total service seeker utility is numerically

equal to the number of successful matches. Under this setting, the three objectives

number of successful matches, total service seeker utility, and total service provider

utility are identical. An optimal matching period maximizes the number of successful

matches, total service seeker utility, and the total service provider utility. All the three

objectives remain at a constant maximum value for 0 < t ≤ |P |
λ

and hyperbolically

decreases for t > |P |
λ

. Therefore, any matching period in the range (0, |P |
λ

is optimal

considering the number of successful matches, total service seeker utility, and the

total service provider utility. For the final objective fairness, which is quantified by

standard deviation in the distribution of utility among the service providers, higher

the matching period the better. If the period of matching is small then the more

sought after provider keeps getting matched every cycle increasing the standard devi-
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ation in the distribution of matches and thereby the fairness. The standard deviation

decreases to 0 as matching period increases from 0 to |P |
λ

and remains 0 for t ≥ |P |
λ

.

Therefore, any matching period in the range [ |P |
λ
,∞] is optimal considering fairness

as the matching objective. In conclusion, when matching period t is |P |
λ

all the four

objectives are optimized. Thus the optimal matching period is when toptimal = |P |
λ

.

We simulated this stochastic environment using the values of the parameters tab-

ulated in Table 4.1.

Table 4.1.
Values of the parameters used for the simulation study for the results
presented in this section.

Parameter Value

λ (Arrival rate) 12 per day
τ (Job time) 1.5 units per hour
µ (Service speed) 5 units per hour
|P | (Number of service providers) 50

Comparison of the theoretical result with simulation for the scenario presented

in Table 4.1 is shown in Figure 4.2. From the theorem, the number of successful

matches remains constant for t ≤ |P |
λ

and hyperbolically decays for t > |P |
λ

. From

Figure 4.2 we observe that the simulation results match well with the prediction.

The minor staircase effect is because the simulation is performed for a finite value of

T = 300. Floating point error occurs when the simulation is performed for a small

finite matching duration. For example when say T = 30, changing the matching

period from 10 to 10.1 decreases the number of matching cycles from 3 to 2. These

errors can be addressed by choosing a total matching duration T much higher than the

range of frequency analyzed. In the simulation studies conducted, a period of T = 300

was chosen to assess the matching period ranging from 0 to 20. If the simulation

is extended for longer duration these fluctuations will die out and converge to the
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theoretical result. However, the fluctuations are negligible even for finite duration

truncation.

Figure 4.2. Comparison of theoretical prediction to simulation studies for
the effect of matching period on the mean service provider utility attained
by implementing multi-period Munkres mechanism under high service rate
setting. The parameters used in the simulation are tabulated in Table 4.1.

Figures 4.3, 4.4, and 4.5 show the effect of period of matching on the four different

matching objectives which are service provider utility, service seeker utility, fairness in

the distribution of utility, and the number of successful matches. Figure 4.3 shows the

mean service provider and the service seeker utility for various periods of matching (t).

For service seeker utility total utility was chosen as the metric to assess the efficiency

of match as unlike the service provider they are not fixed. The number of service

seekers depends on the period of matching itself and they change from one cycle to

another. Both service seeker and service provider utility is constant for t ≤ |P |
λ

or

t ≤ 4.17. Mean service provider utility in this range of matching period is a constant
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value and is given by EUP (t) = T
|P |/λ

= 72. Total service seeker utility when t ≤ 4.17

is given by EUS(t) = 3600.

Figure 4.3. Effect of matching period on the mean service provider utility
and total service seeker utility attained by implementing the multi-period
Munkres mechanism under high service rate setting.

Figure 4.4 shows the fairness in the distribution of utility among the service

providers. Lower the standard deviation in the distribution of utility among the

service providers, more equitable the distribution. When matching period t is small

the more preferred service providers keep getting matched period after period. t < |P |
λ

not all service providers gets matched in every cycle. As the service rate is high, the

service providers who are matched complete their service request in the same match-

ing cycle in which they got matched. Hence, all service providers are available in every

matching cycle regardless of being matched in the immediate previous matching cy-

cle. When this happens the more sought after service providers keep getting matched

in every matching cycle causing unfairness in the distribution of utility among ser-

vice providers. When t increases to |P |
λ

, more service providers participate in every
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matching cycle thereby decreasing the variance or unfairness in the distribution of

utility. For t ≥ |P |
λ

all service providers gets matched in every matching cycle attaining

identical utility and has zero variance or maximum fairness.

Figure 4.4. Effect of matching period on the distribution of utility among
service providers by implementing the multi-period Munkres mechanism
under high service rate setting.

Figure 4.5 shows the number of matches and standard deviation of the distribution

of total matches among the service providers. The matches are counted for each

service provider over a total matching duration T during which the mechanism is

implemented. Equation (4.8) shows the number of total matches over the entire

matching duration T for this setting. If the period of matching is small then the

more sought after provider keeps getting matched every cycle increasing the standard

deviation in the distribution of matches and thereby the fairness.

number of matches =




λT, if t ≤ |P |

λ

|P |T
t
, if t > |P |

λ

(4.8)
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Figure 4.5. Effect of matching period on the total number of successful
matches and distribution of matches among service providers by imple-
menting the multi-period Munkres mechanism under high service rate
setting.

Now we consider the generic case where α ∈ [0, 1]. Here, we relax the assumption

that all the possible matches are perfect compatible. The utility being matched is

given by the binomial distribution i.e. utility B(1, α), where α is the parameter of

the distribution. The special case considered earlier was the perfectly compatible

setting when α = 1. When α = 0 no matching is compatible. As α increases from 0

to 1 the number of possible compatible matches increases. α denotes the probability

with which matching between a randomly chosen service seeker is compatible. For

the generic case we discuss the effect of matching period on multi-period Munkres,

DA, and TTC mechanisms.

(i) Multi-period Munkres

Figure 4.4.1 shows the mean utility attained by service providers and total utility

attained by service seekers for various values of the utility parameter α. When α is
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decreased from 1 to 0.1 i.e. by a factor of 10 times, the mean service provider utility is

mostly unaffected. Consider a matching setting where |P | service providers are being

matched to |P | service seekers. Each service provider has |P | alternatives with a

fraction α|P | of the matches being compatible (utility = 1). The Munkres assignment

mechanism is applied to match service providers to service seeker. We order the

service providers in the set as follows: {1, 2, ..., α|P |, α|P | + 1, ..., α|P | + n, ..., |P |}.
Each service provider has α|P | compatible matches and hence the first α|P | service

providers are assigned to a compatible service seeker and attains a utility of 1. The

service provider α|P |+ 1 receives a compatible match with probability 1−
α|P |+1Pα|P |
|P |Pα|P |

i.e. it receives a compatible match provided all its potentially compatible alternatives

are not already matched. In general, for a service provider α|P |+ n we can obtain a

lower bound on the utility assuming all the previous α|P | + n − 1 service providers

is matched. The service provider α|P |+n finds a compatible match with probability

1−
α|P |+nPα|P |+n−1

|P |Pα|P |
. This probability is also the expectation of utility attained by the

service provider as the utility is 1 if found a compatible match and 0 otherwise. For

the simulation performed with |P | = 50. When α = 0.1 the mean expected utility of

service providers is 99% of that when α = 1. But the service seeker utility decreases

more steeply. This is because Munkres mechanism optimizes the utility of only one

set of agents in the bipartite matching setting.
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Figure 4.6. Performance of multi-period Munkres mechanism for different
matching period (t) under high service rate setting with utility of being
matched following a binomial distribution (B(1, α)). Results are shown
for α ranging between 0.1 and 1.
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From the Figure 4.6 we notice that even though mean expected utility dropped by

10 times, the total attained utility by service providers did not change. In Figure 4.4.1

shows the results of service provider and service seeker utility for α varying between

0.01 and 0.1. Now, the fraction of incompatible matches start affecting the mean

service provider utility. For a set of |P | = 50 service providers being matched with

|P | = 50 service seekers with only a 0.01 fraction of it being compatible, the mean

expected utility of service providers is 49% of that when α = 1. The service seeker

utility fluctuates around a constant value for t ≤ |P |
λ

and drops down hyperbolically.

This is because the total service seeker utility follows the same curve as the total

number of matches and the fluctuations are because Munkres mechanism ignores

optimizing the utility of service seekers.
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Figure 4.7. Performance of multi-period Munkres mechanism for different
matching period (t) under high service rate setting with utility of being
matched following a binomial distribution (B(1, α)). Results are shown
for α ranging between 0.01 and 0.1.
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Figures 4.6 and 4.7 shows the fairness in distribution of utility among the service

providers for α in the range [0.1, 1] and [0.01, 0.1] respectively. The fairness follows

a trend similar to the one discussed for α = 1. When matching period t is small the

more preferred service providers keep getting matched period after period. t < |P |
λ

not all service providers gets matched in every cycle. The more sought after service

providers keep getting matched in every matching cycle. For the same matching

period t a higher α result in higher unfairness as a higher fraction of the matches take

place leading to higher difference in distribution of utility attained by more sought

after service providers and the less sought after ones. When α is extremely small the

standard deviation in utility is positive even for some of the matching period t > |P |
λ

.

For example this is seen for α = 0.01 in Figure 4.7. However, it eventually goes down

to zero when there are enough service seeker alternatives to compensate for a large

fraction of incompatible matches.

The number of successful matches and unfairness in their distribution is shown

in Figure 4.6 for α in the range [0.1, 1]. Regardless of the degree of incompatibility

the standard deviation in service seeker utility drops down steeply from t = 0 to

t = |P |
λ

. The mean service provider utility, total service seeker utility, and the number

of successful matches remains constant for t < |P |
λ

after which it hyperbolically drops

down to 0 for matching periods t > |P |
λ

. Any matching period t ≤ |P |
λ

is optimal

from the utility and number of successful matches standpoint. However, unfairness

in the distribution of utility and number of successful matches among the agents is

least when t = |P |
λ

. Therefore, considering both the utility attained and unfairness in

their distribution, the optimal matching period is when t = |P |
λ

in high service setting.

(ii) Multi-period DA

We consider the scenario summarized in Table 4.1 except that now we study the

effect of multi-period DA algorithm.
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Similar to Munkres, we begin by considering the perfectly compatible setting i.e.

when α = 1. Since DA produces only stable matches regardless of the number of

service seekers in the system only one match take place per matching cycle. Consider

the setting when there is one service seeker and 2 service providers p1, p2. The only

stable match is to match the service seeker to his/her most preferred service provider.

Since the service provider is indifferent between both the service providers (as it is a

perfectly compatible setting) matching either p1 or p2 to the service provider is stable.

Now, if the matching period is long enough to bring in another service seeker to the

system, then the only stable solution is to match one of the service provider to one

of the service seekers (say the service seeker who arrived first in time). Any other

matches blocks this rendering the outcome unstable. Therefore, waiting longer does

not yield additional utility but only decreases the number of possible matching cycles

over the matching duration T . Thus the total number of matches, service seeker, and

service provider utility hyperbolically drops down as matching period t increases in

a perfectly compatible setting as seen in the simulations results shown in Figures 4.3

and 4.5.

(iii) Multi-period TTC For multi-period TTC, the behavior is similar to multi-

period Munkres because there is no constraint of stability as in DA. Figure 4.4.1 shows

the matching objectives as a function of matching period for different values of the

binomial parameter α. The optimal matching period is same as that of multi-period

Munkres.
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Figure 4.8. Performance of multi-period DA mechanism for different
matching period (t) under high service rate setting with perfectly com-
patible matches.
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Figure 4.9. Performance of multi-period DA mechanism for different
matching period (t) under high service rate setting with utility of being
matched following a binomial distribution (B(1, α)). Results are shown
for α ranging between 0.01 and 0.1.
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Figure 4.10. Performance of multi-period TTC mechanism for different
matching period (t) under high service rate setting with utility of being
matched following a binomial distribution (B(1, α)). Results are shown
for α ranging between 0.1 and 1.
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4.4.2 Beta Distribution of Utility

In Section 4.4.1, the utilities of being matched where either 0 or 1 which indi-

cated situations where the matching is either compatible or incompatible. However,

in many applications this might not be the case. For example, in CBDM when mul-

tiple machines (or service providers) meet the size, and other requirements of the

service seeker but one service provider offers more suited material than the other

assigning both the service providers utility = 1 is not desirable. At the same time,

there needs to be a metric to distinguish the utility of being matched to either of

the service provider. Therefore allowing the utility to assume any value between 0

and 1 provides additional flexibility in distinguishing such matches. In this section,

we assume the utility of being matched follows a general beta distribution and study

how it affects the design matching period recommended in Section 4.4.1. We analyze

the effect of matching period on multi-period Munkres, DA, and TTC mechanisms.

(i) Multi-period Munkres

If |P |µ ≥ λτ with deterministic arrival of service seekers with arrival rate λ, a constant

job processing time τ and a constant service rate µ with utility of service seeker and

service provider being matched being drawn from Beta distribution (beta(a, b)), then

the total utility attained by service seekers and service providers for a given matching

period t over a total matching duration T is given by Equations (4.9) and (4.10).

EUP (t) = Number of matches(t) max|P | (4.9)

EUS(t) = Number of matches(t)
a

a+ b
(4.10)

where, max|P | is the expected maximum of |P | random numbers drawn from a

beta distribution Beta(a, b) and number of matches is given by Equation (4.7). For

example, when a = b = 1, beta distribution is same as standard uniform distribution

and we have max|P | = |P |
|P |+1

. Figure 4.11 compares the theoretically proposed utility
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of service providers with simulation experiments for different values of |P |. Other

parameters used in the simulation is same as the ones tabulated in Table 4.1.

Proof: The proof is similar to the proof of proposition 1. For the three separate

cases the number of matches remain unchanged.

Case 1: τ
µ
≤ t ≤ |P |

λ

Total number of matches in the ith matching cycle is λt
|P | . The utility is drawn from

a beta distribution with parameters a, b. Munkres mechanism chooses the largest of

|P | random numbers selected from a standard uniform distribution. Therefore, the

utility attained by each matched service provider in expectation is given by |P |
|P |+1

.

Mean utility attained in ith matching cycle is EUP = λt
|P |+1

Mean utility attained by

the service providers over the entire matching duration T is given by

EUP (t) =
T

(|P |+ 1)/λ
when

τ

µ
≤ t ≤ |P |

λ

Case 2: When t < τ
µ

following the procedure similar to Case 2 in the proof of proposition 1 and applying

the maximum rule for |P | random numbers we have

EUP (t) =
T

(|P |+ 1)/λ
when t <

τ

µ

Case 3: When t > |P |
λ

we have |P | service seekers among the λt total gets matched in every matching cycle.

EUP = |P |
|P |+1

Mean utility attained over the entire matching duration T is given by

EUP (t) =
|P |T

(|P |+ 1)t
when t >

|P |
λ

Figure 4.11 compares the theoretical proposition with simulation experiments for

different values of |P |. The simulation is performed maintaining other parameters as

the ones described in Table 4.1. The utility is from a standard uniform distribution.

Therefore the parameters of the Beta distributions are a = 1, b = 1.
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Figure 4.11. Comparison of theoretical prediction to simulation studies
for the effect of matching period on the mean service provider utility
attained by implementing multi-period Munkres mechanism under high
service rate setting with utility of being matched drawn from a standard
normal distribution.

Figure 4.12 shows the mean utility attained by service providers and total utility

attained by service seekers when matching period is varied from 0 to 20 for the

scenario presented in Table 4.1. Service provider utility follows the curve as discussed

in Proposition 2. Now, unlike the scenario where all matches are perfectly compatible,

we have the total service seeker utility at a matching period equaling approximately

half of the total number of expected matches for the same period. This is because the

Munkres mechanism optimizes the utility of only the service provider set. Utility of

service seekers are not considered in the algorithm. Since the utility of service seeker

being matched to an alternative is obtained from a standard uniform distribution, in

expectation the matches result in a utility of 0.5 per match. Thus the total utility

attained by service seekers in expectation follows Equation (4.11). Figure 4.3 also
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shows the comparison of the service seeker utility as proposed by Equation (4.11)

with simulation studies for the parameters defined in Table 4.1.

EUS(t) =





0.5|P |T
(|P | + 1)/λ

, if t ≤ |P |
λ

|P |2T
(|P |+1)t

, if t > |P |
λ

(4.11)

Figure 4.12. Effect of matching period on the mean service provider and
total service seeker utility attained by implementing multi-period Munkres
mechanism under high service rate setting with utility of being matched
drawn from a standard uniform distribution.

Figure 4.13 shows the effect of matching period on the distribution of utility

among the service providers. Similar to the case for perfect compatibility (as shown in

Figure 4.4) the standard deviation in the distribution of utility drops down drastically

as t increases from 0 to |P |
λ

. However, unlike in the case of perfect compatibility the

standard deviation does not drop to 0 for t = |P |
λ

and remain 0 for t > |P |
λ

. There is still

a non-zero standard deviation in the distribution of utility among service providers
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even at t = |P |
λ

. This is because for t ≥ |P |
λ

only the standard deviation in the

distribution of matches goes to 0, there is still a non-zero standard deviation due

to randomness in the utility attained by matches. In contrast to the case of perfect

compatibility where all utility were 1, here we have utility drawn from a standard

uniform distribution. However, as t increases from |P |
λ

to ∞ the standard deviation

of this distribution decays down to 0 as the service providers have more matching

options waiting for a longer period in individual matching cycles. The standard

deviation in the distribution of utility drops sharply from t = 0 to t = |P |
λ

. At t = |P |
λ

the standard deviation is only 2.5% of the maximum value. For t > |P |
λ

(= 4.17) the

gain in standard deviation drops much less drastically as seen from Figure 4.13. This

is because for t > |P |
λ

the decrease in standard deviation is because of marginally

improved quality of matches of the less sought after service provider. Whereas, when

t < |P |
λ

, increasing t increase the number of successful matches of the less sought after

service provider, which has a much more dominant effect on the standard deviation

of the distribution. Lower the standard deviation in the distribution, the better as

it denotes more fairness in the distribution of match outcomes. At the same time in

Figure 4.12 we saw that the utility of matching decreases hyperbolically for t > |P |
λ

for both service seekers and service providers and remains constants for t ≤ |P |
λ

. Thus

considering both the objectives t = |P |
λ

produces the most desired outcome which we

propose as the design matching period under high service rate setting with utility of

being matched following a standard uniform distribution. Therefore tdesign = |P |
λ

.
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Figure 4.13. Effect of matching period on the distribution of utility and
number of matches among service providers by implementing multi-period
Munkres mechanism under high service rate setting with utility of being
matched drawn from a standard uniform distribution.

Figure 4.14 shows the results for other values of parameter a, b in a general beta

distribution (Beta(a, b)). For other values of a and b we observe that the general

trend of mean seeker, total provider utility, and the distribution of provider utility is

unchanged from that of standard uniform distribution (i.e. when a = b = 1). Only

their magnitudes have decreased as the value of parameters b relative to a increases.

The expected value of beta distribution is given by a
a+b

. When b increases the expected

value decreases. Lowering the magnitudes of utility decreases the magnitude of the

effect, however the general trend of the effects is preserved. This is because the

number of successful matches for a given matching period t is unchanged even if

the values of parameters a, b deviates from that of a standard uniform distribution.

Therefore for 0 ≤ t ≤ |P |
λ

the mean service seeker utility and total service provider
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utility remains constant in this period after which it hyperbolically decreases. The

mean service provider utility is expressed as in Equation (4.12).

EUP (t) = Number of matches× δmax (4.12)

where, δmax denote the maximum of |P | random numbers drawn from Beta(a, b).

This is the reason why even though value of b increases from 1 to 9 (nearly 9 times),

the service provider utility is majorly unchanged as the value of δmax does not drop

down much. For example, when a = b = 1, we have δmax = |P |
|P |+1

. In a perfectly

compatible setting we have EUP (t) = Number of matches i.e. δmax = 1 which is not

much different from δmax = |P |
|P |+1

= 0.98.

The total service provider utility in a high frequency setting with utility following

a beta distribution (Beta(a, b)) is expressed as in Equation (4.13).

EUS(t) = Number of matches× a

a+ b
(4.13)

.

This is because Munkres mechanism focuses only on the service provider side

maximizing their utility and therefore the utility of the service seeker side is a random

number drawn from Beta(a, b) which in expectation has the value a
a+b

. In both

Equations (4.12) and (4.13), the number of matches is given by Equation (4.14).

Number of matches =




λT, if t ≤ |P |

λ

|P |λ
t
, if t > |P |

λ

(4.14)

For example when a = 1, b = 9, we have a
a+b

= 0.1 and total service provider

utility (EUS)=0.1λT = 360 for t ≤ |P |
λ

= 4.17 as seen in Figure 4.14.
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Figure 4.14. Effect of matching period on different matching objectives
by implementing multi-period Munkres mechanism under high service rate
setting with utility following a beta distribution, Beta(a, b). Parameters
used in the simulation are tabulated in Table 4.1.
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Multi-period DA

While applying Multi-period Munkres when job time was constant we observed that

for high service rate setting the utility remained constant for t ∈ (0, |P |
λ

) and the

utility decreased from its optimal value hyperbolically for t > |P |
λ

with the optimal

value being at |P |
λ

. When the matching mechanism whose frequency is being optimized

is DA instead of Munkres, for the same setting a slightly different pattern is observed.

Utility attained and fairness in the distribution of utility among service providers and

service seekers for this scenario are shown in Figure

When the period of matching cycle is increased, manufacturer (or service provider)

utility (EUP ) gets affected due to two reasons: a) the sample size of service seekers

increases thereby increasing the number of alternatives to choose from, b) the number

of matching cycles decreases over a fixed duration T thereby decreasing the average

utility attained over an assessment duration T . Both of these causes have opposing

effects on the average manufacturer utility.

When the matching period t is increased from 0, at low values of t, the effects due

to a low sample size of service seeker alternative are more dominant considering the

average utility attained by all service providers. This is because most of them remain

unmatched in each matching cycle. Moreover, if the average service request processing

time τ is lower, then the unfairness in utility distribution is more prominent at small

values of matching period t. This is because the more sought-after manufacturer

will be matched in each cycle while the others remain unmatched. If τ is high, then

the less desirable manufacturers get matched due to the lack of availability of the

manufacturers already matched in every matching cycle.

At large values of t, the marginal effect from an increased sample size due to

increased t is less prominent. Now, the effect of a decreased number of matching

cycles becomes more prominent. Therefore, as t is varied from 0 to large numbers

there is an increase in service provider utility initially, followed by a decrease. The

point where the effect of marginal increase in period on the service provider utility

undergoes a transition from increase to decrease, is the optimal matching period.
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From simulation studies, we obtain that the optimal matching period is tdesign =
|P |
λ

. This is the period at which service providers attain the highest utility. This

is not an exact point as the optimum shifts mildly due to stochasticity in arrival

patterns, randomness in utility distribution, the working time of service providers.

But over a wide range of arrival rate λ, tdesign is the optimal matching period. The

reason is that when 0 < t < tdesign there are not enough service seekers in the system

(in expectation) at the instance of matching to match all the service providers. Thus,

when t is increased from 0 to tdesign the effect of an increased number of service

seekers is more pronounced than the effect of a decreased number of matching cycles.

However, when t > tdesign there is sufficient number of service seekers to match all

the service providers and only the quality of alternatives or number of matching

outcomes to choose from improves. As a result, the effects due to a decreased number

of matching cycles start taking more precedence, thereby decreasing the overall utility.

Also, the presence of a |P | number of service seekers does not guarantee that all service

providers in P will get matched. This is because DA produces only stable matches

and there may be no stable solution that gets all |P | agents matched. In practice,

the required number of service seekers is slightly higher than |P | because of this

restriction of stability. This is why in the simulation studies the actual optimal point

is slightly higher than the design optimal point as seen in Figure 4.4.2. For example,

when λ = 1 we have tdesign = 5 but the actual optimum occurs at t = 6, and when

λ = 2 we have tdesign = 2.5 when the actual optimum is at 3. Thurber [53] showed

that the number of stable matches under DA mechanism (denoted by |M |) when λt

men and women are being matched is

|M | > 1.509λt

1 +
√

3
when |λt| ≥ 1 (4.15)

As a result, the actual optimum is not too far away from tdesign as the number of

stable matches grows in power of t.
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Figure 4.15. Effect of matching period on different matching objectives by
implementing multi-period DA mechanism under high service rate setting
with utility following a beta distribution, Beta(a, b).
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Figure 4.16. Effect of matching period on different matching objectives
by implementing multi-period TTC mechanism under high service rate
setting with utility following a beta distribution, Beta(a, b).
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4.5 Results B: Effect of Matching Period Under Various Utility Distri-

bution With Low Service Rate

Now we consider the setting where service rate is low compared to arrival rate i.e.

τ
µ
> |P |

λ
. We study the effect of period of matching on multi-period implementation

of Munkres, DA, and TTC mechanisms in this section.

4.5.1 Binomially Distributed Utility

In this section we assume that the utility of being matched follows a binomial

distribution with parameter α. The parameters for the simulation experiments used

in this section are summarized in Table 4.2. We have τ
µ

= 5 and |P |
λ

= 4.17 for the

the parameters chosen for simulation studies. Thus they satisfy the low service rate

criteria.

Table 4.2.
Values of the parameters used for the simulation study for the results
presented in this section.

Parameter Value

Utility B(1,α)
Arrival Process Deterministic
λ (Arrival rate) 12 per day
τ (Job time) 1.5 units per hour
Job time distribution Fixed
µ (Service speed) 0.3 units per hour
h (Service time) 1 hour per day
P (Number of service providers) 50

Multi-period Munkres

For the special case when α = 1 we propose the following utility distribution for the

service providers participating in the matching mechanism.
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Proposition 3: If τ
µ
> |P |

λ
with deterministic arrival of service seekers, a constant

job processing time τ and constant service rate µ, then the mean utility attained by

service providers for a given matching period t over a total matching duration T is

given by

EUP (t) =
T

τ/µ + slack
(4.16)

where, |P | is the number of service providers, λ is the rate of arrival of the service

seeker. Slack is defined as slack = (i + 1) ∗ t − τ
µ

if i is a whole number such that

i ∗ t ≤ τ
µ
< (i+ 1)t.

Proof: We consider two separate cases:

Case 1: when t ≤ τ
µ

Service provider needs
⌈
τ
µt

⌉
matching cycles to complete the assigned service task

where de is the ceiling function

Thus, it takes
⌈
τ
µt

⌉
matching cycles for the service provider to be available again for

matching

A matched service provider is available after
⌈
τ
µ

⌉
. It takes

⌈
|P |
λt

⌉
matching cycles for

service seeker to outnumber the service providers

As
⌈
τ
µt

⌉
≥
⌈
|P |
λt

⌉
and t ≤ τ

µ
a matched service provider gains a utility of 1 after a time

period of τ
µ

+ slack.

Thus, in the total duration T the mean utility of service providers is given by

EUP (t) = T
τ/µ+slack

when t ≤ τ
µ

Case 2: when t > τ
µ

a matched service provider gains a utility of 1 after a time period of t

Thus, in the total duration T the mean utility of service providers is given by

EUP (t) = T
t

When t > τ
µ
, t = τ

µ
+ slack as i = 0 by definition of slack

EUP (t) = T
τ/µ+slack

when t > τ
µ
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Comparison of this theoretical prediction to numerical simulation of the scenario

summarized in Table 4.2 is shown in Figure 4.17. The simulation results follow the

theoretical curve proposed in Proposition 3. From the theorerical curve for service

provider utility we see that the mean utility is the highest when slack = 0 as the

parameters T , τ , and µ are characteristics of the target scenario. Only slack depends

on the period of matching. We have slack = 0 when matching period τ
µ

is perfectly

divisible by the matching period t. This is also explained by that when matching

period perfectly divides τ
µ
, there is no waiting period after the completion of the

assigned service task until the next match is received. In conclusion, the mean service

provider utility attains the maximum value of T
τ/µ

for those matching period t that

perfectly divides τ
µ
. For t > T

τ/µ
the mean service provider utility hyperbolically drops

down to 0.

Figure 4.17. Comparison of theoretical prediction to simulation studies
for utility attained by service providers as a function of matching period t
under low service rate setting with all matched being perfectly compatible.
The parameters used in simulation are the same as the ones tabulated in
Table 4.1.
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Figures 4.5.1 shows the mean utility attained by service providers and total utility

attained by service seekers for various matching period under low service rate and

perfect compatibility assumptions for the scenario summarized in Table 4.2. The

mean service provider utility follows the curve described in Proposition 3. The total

service seeker utility over the matching duration is given by EUP (t) = 50EUS(t). The

maximum occurs whenever the matching period t perfectly divides τ
µ
. The number

of matches follows the same curve as described in Proposition 3.
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Figure 4.18. Effect of matching period on various matching objectives
for multi-period Munkres mechanism under low service rate setting with
perfectly compatible utility setting.
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Figure 4.19. Effect of matching period on various matching objectives
for various matching period of Munkres mechanism when service rate is
low and utility follows a binomial distribution, B(1, α).
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Figure 4.20. Effect of matching period on various matching objectives for
various matching period of DA mechanism when service rate is low and
utility follows a binomial distribution, B(1, α).
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Figure 4.21. Effect of matching period on various matching objectives
for various matching period of TTC mechanism when service rate is low
and utility follows a binomial distribution, B(1, α).
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4.5.2 Beta Distributed Utility

Now, in the low frequency setting we show the results of how the matching period

affects the outcome of multi-period Munkres, DA, and TTC mechanism when utility

of being matched follows a Beta distribution. The parameters used in the results

present in this section are tabulated in Table 4.3.

Table 4.3.
Values of the parameters used for the simulation study for the results
presented in this section

Parameter Value

Utility Beta(a, b)
Arrival Process Deterministic
λ (Arrival rate) 12 per day
τ (Job time) 1.5 units per hour
Job time distribution Fixed
µ (Service speed) 0.3 units per hour
h (Service time) 1 hour per day
P (Number of service providers) 50

When utility follows a beta distribution under low-service setting the effect of

matching period on multi-period Munkres mechanism is similar to that of perfectly

compatible setting under low-service rate. However in multi-period Munkres the

seeker utility is maximum whenever matching period t perfectly divides τ
µ
. In contrast

to that, in multi-period DA whenever t perfectly divides τ
µ

there is a local maximum

of the utility but is lower than the global maximum that occurs when t = τ
µ
. This

is because of the effect similar to the one observed in high service rate setting as

explained in Section 4.4.2.
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Figure 4.22. Effect of matching period on various matching objectives
for various matching period of multi-period Munkres mechanism when
service rate is low and utility follows a beta distribution, Beta(a, b). The
parameters used in this simulation of these results are summarized in
Table 4.3.
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Figure 4.23. Effect of matching period on various matching objectives
for various matching period of multi-period DA mechanism when service
rate is low and utility follows a beta distribution, Beta(a, b).
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Figure 4.24. Effect of matching period on various matching objectives
for various matching period of multi-period TTC mechanism when service
rate is low and utility follows a beta distribution, Beta(a, b).
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4.6 Conclusions

In high service rate setting, i.e. when we have |P |
λ
≥ τ

µ
, with a deterministic

arrival of service seekers, all matches being perfectly compatible and constant job

processing time, the optimal period of matching is P
λ

. For any matching period in the

range 0 < t ≤ |P |
λ

the Munkres mechanism yields the same maximum utility for both

service seekers and service providers in high service setting. It also yields the same

maximum number of successful matches in this range of matching period. For t > |P |
λ

,

the utility and the number of successful matches hyperbolically decreases. Therefore,

any matching period in this range is optimal for a Munkres mechanism considering

the number of successful matches and the utility as the objective for optimization.

But from the point of consideration of fairness, which is quantified by the standard

deviation in the distribution of utility among service providers, the most optimal

matching period is when t = |P |
λ

. For t < |P |
λ

the standard distribution is higher than

when t = |P |
λ

. The standard deviation decreases as t increases from 0 to |P |
λ

. Therefore

considering all three objective the most optimal period to implement the matching

mechanism is when t = |P |
λ

.

If the assumption of perfectly compatible matches is relaxed, the optimal period

is still unchanged. When the matches are perfectly compatible the utility follows the

same curve as the number of successful matches. Now, if we relax the assumption

of perfect compatibility to the utility being drawn from a beta distribution only the

expected utility from the match changes. The number of matches is same as proposed.

For TTC and DA mechanism the same results are obtained for the optimal pe-

riod of matching. In DA mechanism an additional observation is that the utility and

successful increases (instead of staying constant at the maximum value) in the range

[0, |P |
λ

]. This is because DA always produces stable outcomes. This limits the set of

possible outcomes only into a small regime of stable solutions. In Munkres mecha-

nism any bipartite matched output is possible. The set of stable solution increases

exponentially as the set of service seekers to choose from increases. This is why when
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matching period is increases DA has an additional effect of increasing the utility. The

design point is unchanged. The optimal period continues to be |P |
λ

.

Under low service rate setting, i.e. when we have |P |
λ
< τ

µ
, with a deterministic

arrival of service seekers, all matches being perfectly compatible and constant job

processing time, the optimal period of matching is τ
µ
. The mean utility attained by

service providers for a given matching period t over a total matching duration T is

given by EUP (t) = T
τ/µ+slack

, Slack is defined as slack = (i + 1) ∗ t − τ
µ

if i is a

whole number such that i ∗ t ≤ τ
µ
< (i + 1)t. Whenever the matching period is a

perfect divisor of τ
µ

we have slack = 0. At this matching period the total number

of successful matches, the mean service seeker utility, and the total service provider

utility is maximized. Similar to the high service rate setting the fairness increases as

matching period increases from 0 to τ
µ
. Thus considering all the objectives the optimal

matching period is τ
µ
. These results extend to both DA and Munkres mechanism

under any utility distribution assumptions.
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5. GENERALIZING OPTIMAL MATCHING PERIOD IN REAL-WORLD

APPLICATIONS

There are three primary assumptions that were made for the results presented in

Section 4.4 and 4.5 in Chapter 4. These were: a) the arrival process was deterministic

with a constant arrival rate, b) the job time for processing the service request was

constant, and c) the utility of being matched was drawn from standard distribution

like Binomial and Beta. In this chapter we discusses the effect of relaxing these

assumptions on the optimal matching period recommended in the previous chapter. In

Section 5.1 we discuss the effect of relaxing the assumption of deterministic arrival and

constant job processing time. In Section 5.2 we simulate an illustrative decentralized

design and manufacturing scenario relaxing all the assumptions considered including

the utility of being matched following standard probability distributions. We shows

how the results presented generalizes to the illustrative simulated scenario. Finally,

Section 5.3 presents the concluding remarks.

5.1 Effects of Relaxing Some of the Idealistic Assumptions

In this section we relax the assumption of deterministic arrival and constant job

processing time. Instead of a deterministic arrival process, we model it as a Poisson

process and study the effect of that on the optimal matching period in Section 5.1.1.

In Section 5.1.2 we model the job processing time as exponentially distributed among

the population of designers and study its effects on the optimal matching period.

5.1.1 Effects of Relaxing the Assumption of Deterministic Arrival

In Chapter 4 we assumed that the arrival of service seekers are deterministic with

a constant arrival rate. However, in practice the arrival pattern is not deterministic.
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In a totally decentralized setting, the service seekers arrive from a wide range of

independent sources. The arrival time of a service request from a service seeker is

independent from the arrival time of service requests from other service seekers. A

Poisson process better models the arrival pattern in practice than a deterministic

approximation.

Figure 5.1 shows the effect of Poisson arrival in high service rate setting. The

parameters used for the results presented in Figure 5.1 are the same as in Table 4.1

for the Deterministic and Poisson simulation curves. The general behavior of the

effect of matching period on the matched outcome is unchanged from deterministic

to Poisson arrival process. The total service seeker and mean service provider utility

remains constant for t ≤ |P |
λ

after which it hyperbolically drops down and the standard

deviation in their distribution drops drastically as t increases from 0 to |P |
λ

. The

Poisson arrival only causes some fluctuation around the mean deterministic behavior.

These fluctuations are more prominent when t ≤ |P |
λ

. This is because the main

effect of a Poisson arrival is the variation in the number of service seekers to choose

from in a matching cycle. When t > |P |
λ

there are already more service seekers than

the available service providers in expectation and the fluctuation due to a Poisson

arrival is not much evident in the matched outcome. To verify this effect further,

Gaussian process regression was performed on the observed data for which the results

are presented in Figure 5.2. From the deterministic case, we know that the matching

period has entirely different effects in the range 0 < t ≤ |P |
λ

and when t > |P |
λ

two separate Gaussian regressions were performed on the observed data in these

regions. The regression yields a straight line as in the case of deterministic arrival

process in the region 0 < t ≤ |P |
λ

and it yields a hyperbolically decaying curve for

t > |P |
λ

. When averaged over 10 samples the uncertainty band diminishes over a

single-sample simulation. Moreover, when averaged over 10 samples the mean curve

of the Gaussian regression shifts closes to the deterministic curve as observed from

Figures 5.2a and 5.2b.
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Figure 5.3 repeats the simulation under low service rate setting. The parameters

used in the deterministic and Poisson simulation are the ones tabulated in Table 4.2.

Similar to the high service rate setting, the Poisson arrival only adds a fluctuation

around the deterministic arrival process. The mean effects produced by a Poisson

arrival are the same as deterministic process.

Therefore, in conclusion for both high and low service rate setting Poisson arrival

process only causes some fluctuation around the deterministic deductions of the effects

of matching period. The optimal matching period concluded for deterministic arrival

is unchanged for high and low service rate setting even if the arrival process transitions

to Poisson.
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Figure 5.1. Comparison of Poisson arrival to deterministic arrival for
multi-period Munkres mechanism under high service rate setting.
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(a)

(b)

Figure 5.2. (a) Gaussian process regression applied to Poisson arrival.
(b) Gaussian process regression applied to 10 sample average of Poisson
arrival.
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Figure 5.3. Comparison of Poisson arrival to deterministic arrival for
multi-period Munkres mechanism under low service rate setting with util-
ity following a perfectly compatible setting.
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5.1.2 Effects of Relaxing the Assumption of Uniform Job Processing

Time

Previously we had assumed that the job processing time is constant. In real

applications it is not constant and from practice it is observed that the job processing

time is exponentially distributed in the population. This is because of a characteristic

of a general population that a large number of service requests will have relatively

small processing time, but at the same time there will be quite a few number of service

requests with extremely large processing time. The fraction of service requests above

a threshold processing time exponentially decays as the threshold increases. From

the data we had collected this exponential trend was observed which is discussed in

further detail in Section 5.2.2.

In Figures 5.4 and 5.5 the effect of job processing time being exponentially dis-

tributed is shown. Figure 5.4 shows the effect on high service rate setting. For this

particular comparison the utility is drawn from standard uniform distribution. For

this particular simulation, the parameters used in the simulation are same as the ones

tabulated in Table 4.1 with only difference being job processing time distributed expo-

nentially instead of fixed and the utility is drawn from standard uniform distribution.

The mean of the exponential distribution is 1.5 (same as the fixed processing time

constant). Figure 5.5 shows the effect on low service rate setting. The parameters

used in Figure 5.5 are the same as the ones tabulated in Table 4.2.

From the comparison between fixed and exponential distribution we observe that

under high service rate setting the optimal matching period is unchanged even if

the job processing time is exponentially distributed. But, when the service rate is

low the optimal matching period for exponentially distributed job processing time

is different from the fixed one. As matching period t increases both mean service

provider utility, total service seeker utility, and number of successful matches decreases

monotonically. This is because for any given population since the processing time is

exponentially distributed there are large number of service requests with extremely
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small processing time and decreasing the length of matching cycles increases the total

number of matches performed during the entire mechanism implementation duration

T . Therefore from the perspective of optimizing the utility or number of successful

matches, lower the matching period t the better. The standard deviation in the

distribution of utility also monotonically decreases as matching period t increases.

This is because when matching period t is low the service provider who got matched

to jobs that needed lower processing time gets matched in a higher number of cycles

thereby giving them a higher overall utility in the entire match duration T . This effect

becomes less pronounced as matching period t increases. So from the perspective of

optimizing the fairness in the distribution of utility among the agents higher the

matching period t the better.

In conclusion, there is no optimal matching period considering all the matching

objectives when service rate is low and printing time is exponentially distributed.

There is a tradeoff between utility gained and fairness in their distribution as match-

ing period t is varied. The optimal matching period is application specific and needs

to be designed based on the specific objectives of the target application. The mecha-

nism designer needs to design the matching period based on which objective is more

important whether the cumulative utility or fairness in their distribution.
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Figure 5.4. Comparison of exponential distribution of job processing
time and fixed job processing time for multi-period Munkres mechanism
under high service rate setting with utility drawn from standard uniform
distribution.
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Figure 5.5. Comparison of exponential distribution of job processing time
and fixed job processing time for multi-period Munkres mechanism under
low service rate setting in a perfectly compatible utility setting.
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5.2 Simulation Studies of an Illustrative Decentralized Manufacturing

Scenario

We consider an illustrative scenario where 50 independent 3D-printer machine

owners are offering manufacturing services. Service seekers are designers from a pop-

ulation who are trying to get their designs prototyped in the 3D printers. The service

providers and service seekers are referred to as manufacturers and designers respec-

tively. The arrival of designers is modeled as a Poisson process. The manufacturer

pj offer hj working hours per day. Matching is done after every t days. We assume

that each manufacturer can be matched to at most one designer in a matching cycle.

This is not a limitation of the model but has been assumed for analysis purposes.

5.2.1 Data Collection

The manufacturers’ attributes considered are machine volume, machine resolu-

tion (Res), the tensile strength (TS) of the material offered, manufacturer proximity

whereas designer attributes were printing time, material requirement, and design di-

mensions (Vol). To generate the attributes of the designers, 100 different designs are

downloaded from Thingiverse [38] and their characteristics such as design dimensions,

printing time required in different 3D printers are recorded. Some of the sample de-

signs used are shown in Figure 5.6. Attributes of a large sample size of designers

are generated from these recorded attributes. Manufacturer data concerning the ma-

chine attributes are collected from the Senvol [54] database. The machine search

mode on the database is used for searching machine features. Material properties of

the material used in these 3D printers are collected from iMaterialise [39]. 50 unique

material machine combinations are used to define the attributes of 50 manufacturers.

Ranges of attributes of the designs used in the simulation studies are summarized in

Table 5.1.
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Figure 5.6. Samples of designs used in the simulation studies.

Figure 5.7. Examples of some of the 3D printers used in the simulation
studies.

Table 5.1.
Range of values used for the attributes in the simulation studies.

Attribute Area (in2) Vol (in3) Res (mm) TS (MPa)

min 3.4 4.5 0.01 14

max 279.3 67875.4 1 1800

5.2.2 Setting Parameters of the Simulation Studies

The working time (h) denotes the availability of the manufacturers on a day and

this in combination with working speed determined the service rate of the manufac-

turer. The working speed depends on the 3D printing process. For example Stere-

olithography (SLA) is faster than Fusion Deposition Modeling (FDM). Figure 5.2.2

compares the printing time for the 100 designs downloaded from Thingiverse [38] on

MakerBot and Form 1+ machines. As expected the printing time on each machine

is exponentially distributed across the designer population with the mean character-

istic of the machine. For example in MakerBot machine the printing time for the
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100 designs followed an exponential distribution with mean printing time 5.77 hours.

Form 1+ had a lower mean printing time of 1.73 hours as compared to the 5.77 hours

of MakerBot as Form 1+ uses SLA process and MakerBot uses relatively more time

consuming FDM process. For five different machines the printing time calculation

was made using Cura [55] software after which an exponential curve was fitted. The

results of the parameter of the exponential curve on seven different machines are

tabulated in Table 5.2. It is not possible to calculate printing time for several tens

of thousands of designs on 50 different machines. Therefore, to simulate the char-

acteristic of a representative decentralized design and manufacturing population the

following sampling technique was used. The upper 95% confidence bound on the

mean printing time for the 100 designs on the slowest machine (Makerbot Replica-

tor 2) was 7.17 hours and the lower 95% confidence bound on the fastest machine

(Form 1+) was 1.39 as observed from Table 5.2. Other mean printing time was in be-

tween these two bounds. 50 samples were drawn from a uniform distribution between

1.5 and 7.5 to represent mean printing time for 50 different machines. For example

τj ∼ Uniform(1.5, 7.5) denotes the mean printing time of manufacturer pj. For the

designer si being matched to the service provider pj, the printing time is generated

from an exponential distribution with parameter being the mean printing time of

service provider pj i.e τij ∼ exp(τj).



126

Figure 5.8. Printing time for 100 designs downloaded from Thingiverse
on MakerBot and Form 1+ as calculated using Cura [55] software.

Table 5.2.
Parameters of the exponential distribution of printing time of the 100
designs on seven different machines

Machine Mean (hours) 95 % CI

Makerbot Replicator 2 5.77 [4.76, 7.17]

Form 1+ 1.73 [1.39, 2.19]

Ultimaker 2 4.49 [3.71, 5.55]

Lulzbot TAZ 4 6.19 [5.14, 7.60]

Witbox 6.05 [5.02, 7.44]

Prusa Mendel i3 4.53 [3.75, 5.58]

B9 Creator 1.98 [1.56, 2.60]
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For dimensions like area and volume similar sampling technique was used based

on the parameters calculated using the 100 representative designs as these attributes

are also exponentially distributed in a random population. Working hours was set

to h = 5 hours per day. Without loss of generality, service rate, µ = 5 for all

manufacturers. Service rate is a combination of the effect of working hours and

service speed. But, however the effect of service speed was already incorporated into

the printing time while sampling using different parameters based on the service speed

of each service provider.

The mean printing time of the selected designs on the selected machines for simu-

lation studies is approximately 5.99 hours. The efficiency of the mechanism is assessed

over a duration of 30 days (T = 30) since this was sufficiently long compared to the

average job processing duration (τ = 5.99 hours). The arrival process of service seek-

ers is assumed to be distributed as Poisson with a mean arrival rate of 12 designs per

day (λ = 12). The matching when period (t) is varied from 0.25 days to 20 days in

increment of 0.25 days.

To simulate the distribution of utility, we began by first calculating the expected

utility that manufacturers gain being matched to designers and vice-versa for the

100 representative designs and the 7 representative machines using the procecure

discussed in Section 2.3.1 in Chapter 2. From these calculations we found that in

between 90% and 100% of the designs in the population could be processed in these

machines. Incompatibility arose primarily due to volume and build area dimension

constraints. The utility calculated for the compatible matches was used to obtain the

parameters of the beta distribution for the individual machines. Superimposing the

binomial distribution over the beta distribution the utility of individual designer to

manufacturer matches were obtained. These distributions were heterogeneous among

the service providers resulting in preferential treatment of certain service providers

over others. For example, the utility for being matched to one of the service provider

was generated from Beta(1, 0.9) whereas for another provider it was Beta(1, 0.1)

resulting in preferential treatment of the former.
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All the above conditions used in the simulation study is summarized in Table 5.3.

Table 5.3.
Parameters and assumptions used in the CBDM illustrative scenario sim-
ulation.

Parameter Value

Utility Generated from Data
Arrival Process Poisson
λ (Arrival rate) 12 per day
tauj (Mean Job time for pj) Uniform(1.5,7.5) hours
Job time distribution Exponential
µ (Service speed) 5 units per hour
h (Service time) 5 hours per day
|P | (Number of service providers) 50
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5.2.3 Results of Simulation Studies

Figure 5.9. Results for effect of matching period on various matching
objectives for the illustrative CBDM scenario.
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Figure 5.9 shows the results for mean service provider utility, total service seeker

utility, number of matches, and fairness in the distribution of utility among service

providers for various period of matching t. For the simulation scenario we had τ
µ

= 4
5

and |P |
λ

= 4.17. Since |P |
λ
≥ τ

µ
this represents a high service rate setting. From the

conclusions made in the analytic studies under standard utility distribution assump-

tion it was proposed that |P |
λ

is the optimal matching period. From Figure 5.9 we

see that |P |
λ

is the optimal matching period considering service provider utility, num-

ber of matches, and fairness in their distribution as the service provider utility and

number of matches is maximum when t ≤ |P |
λ

and decreases for t > |P |
λ

. The service

seeker matches decreases as t increases as Provider optimal DA primarily focuses on

optimizing the ordinal (and thereby cardinal) efficiency of service providers. Some

fluctuations are observed observed around the mean trend because the arrival process

is Poisson and not deterministic in the simulation.

5.3 Conclusions

The effect of relaxing the idealistic assumptions used in the analysis presented in

Chapter 4 were discussed. Relaxing the assumption of Deterministic arrival into more

practical Poisson arrival process did not change the optimal matching period for both

high and low service rate setting. Poisson arrival only causes some fluctuation around

the mean predicted behavior for deterministic case. Optimal matching period is |P |
λ

in

high service rate setting and τ
µ

under low service rate setting even with Poisson arrival

process. In expectation, the matching objectives are optimal when the matching

period is tuned to this value. However, relaxing the assumption of fixed printing

time to a variable one which is exponentially distributed across the target population

changes the optimal matching period under low service rate setting. Under low service

rate setting with printing time exponentially distributed, lower the matching period

more optimal the matched objectives. Both service seeker and service provider utility

and fairness in their distribution increases as matching period t increases. But, in
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high service rate setting the optimal matching period, |P |
λ

, is unchanged even when

the printing time is exponentially distributed. Finally, an illustrative CBDM scenario

was simulated by relaxing all the assumptions- the arrival process was modeled as

Poisson, the service rate was heterogeneous among the service providers, the printing

time was exponentially distributed among the designer population which varied from

one service to another, with utility following no distributional assumptions. The

optimal matching period for high service rate |P |
λ

generalized to this scenario.
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6. MODELING EVOLUTIONARY DYNAMICS OF AIR TRANSPORTATION

SYSTEM

To analyze the effects of policies within the air transportation network, there is a

need to model how policies affect the decisions made by airlines. To model this effect

we need to understand how airlines make decisions. Often such decisions are not

independent, and is made in the presence of decisions by competing airlines. In this

chapter, we present a model to understand how airlines make decisions including the

effect of competition. The model is calibrated based on historic data.

The challenge is that the airline decisions are made based mostly on proprietary

information. However, for such models to be useful for target stakeholders such as

Federal Aviation Administration in the design of policies they need to rely only on

openly available data sources. Therefore we develop a predictive model of airline

route selection decisions based only on openly available data.

The model accounts for airline competition and parameters such as operating cost

which can be influenced by the policymakers. The model is illustrated using a dataset

from two major airlines in US domestic Air Transportation Network.

The dataset and the cost model are used for Bayesian estimation of model param-

eters, which are then used to predict the effects of cost and demand on the evolution

of the network topology. From the estimates obtained on the preference parameters,

it is found that decreasing the operating cost and increasing the market demand in-

creases the probability of operating service on the route for airlines, and the operating

cost has a greater effect than market demand and route distance in the route selection

decisions.
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6.1 Introduction

Airline decisions depend on a large number of variables. The data on many of these

variables are proprietary, and therefore not publicly available. Several stakeholders,

who do not have access to all the decision variables of the airlines, have an interest in

understanding how airlines make these decisions. For example, regulatory bodies such

as the Federal Aviation Administration (FAA) can use the entry decision model to

direct the evolution of the Air Transportation Network (ATN) topology [56] towards

improved connectivity, robustness, and resilience. Hence, there is a need to model

such routing decisions using publicly available data.

In addition to being publicly available, it is important to base these decision mod-

els on factors that policymakers can influence. Air Transportation Network (ATN)

evolves based on network decisions made by the airlines. If we construct a model

that mimics network decisions of airlines by understanding their preferences towards

factors that policymakers can influence, then such models can be used to provide

useful guidance to regulatory bodies such as FAA to play an active role in channel-

ing the network evolution towards targeted performance. For example, some of the

factors such as operating cost can be directly influenced by the policymakers through

incentives or imposing taxes. A decision model that estimates the preferences of air-

lines based on operating cost when making route decisions can be effectively used by

policymakers in co-evolving the network.

Various approaches have been used in the past to model airline route selection

decisions using publicly available data on route characteristics such as market demand,

operating costs, route length. These approaches were primarily based on approaches

such as linear programming [57], integer programming [58], and machine learning [59].

All these approaches are focused on predicting the evolution of the ATS network.

They do not explicitly model the decisions made by airlines in response to changes

in factors that policymakers can influence. Sha et al. [60] develop decision-based

models to estimate the importance of decision variables that can be influenced by
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policymakers. These models are based on discrete choice, and use procedures to

quantify the preferences of airlines towards route characteristics. The limitation of

this model is that it does not account for the effect of competition among the airlines.

In addition to route characteristics, potential competition from other airlines also

influences these decisions. The profit that the airlines gain by operating a service on

a route is affected by the presence of a competitor. The competitor may lead to a

decrease in profit by reducing the market share or an increase in profit by reducing

overall operating cost. Based on the nature of interaction the effect of the competitor

on profit may be positive or negative. A discrete games model developed by Bresnahan

and Reiss [61] has been effectively used in the past to model the effect of competition

on airline decisions. These models study the effect of demographic factors such as city

population of connecting airports or per capita income, nature of destination such as

vacation or commercial, and geographic factors such as distance. Policymakers do not

have influence over these demographic and geographic factors. In summary, discrete

choice-based models help to understand the preferences of airlines towards factors

that the policymakers can influence but they do not account for competition. On the

other hand, discrete games models [62] address competition but are limited in terms

of usefulness to policymakers.

In this paper, we address these limitations by estimating preferences towards

factors that the policymakers can influence, while including the effect of competition.

Once the preferences are estimated, we study how the airline’s entry decisions are

affected by variations in these factors. In particular, we study how the strategic

route decisions taken by airlines in the presence of competition from other airlines

is affected by these variations. With the motivation of understanding how airlines

make route selection decisions under competition, we answer the following research

questions: (1) how can the preferences of airlines towards factors that the policy-

makers can influence be estimated including the effect of competition? and (2) how

do the variations in route characteristics affect the route decisions and the number of

routes operated by the airlines?
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To answer these questions, we build on the discrete games model by Ciliberto and

Tamer [62] and estimate the preferences of airlines towards operating cost, market

demand, and distance while making the route selection decisions. Operating cost,

market demand, and distance are referred to as the explanatory variables. The strat-

egy of whether or not to operate a service on the route by each airline is based on the

preferences for explanatory variables, and presence of the competitor in the route.

The Markov Chain Monte Carlo (MCMC) method is used to obtain posterior dis-

tribution on these preference parameters using data from decisions made by these

airlines in the past. We assume that the airlines played Nash Equilibria strategy

of the modeled discrete game. The presence of non-unique Nash equilibria makes

the estimation of preference parameters challenging. Existing methods address this

challenge by introducing a large number of latent parameters causing problems such

as over-fitting. To tackle the problem of non-unique Nash equilibrium without over-

fitting the model, we use a network level parameter called airport presence [63]. The

Metropolis-Hastings algorithm [64] is used to sample the posterior on preferences to-

wards various route characteristics and the effect of competition, and to study the

relative significance of each of the route characteristics in the route selection decision.

Section 6.2 reviews existing literature, Section 6.3 describes the theoretical model

of airline competition and Section 6.4 provides an overview of the numerical solution

procedure used to estimate the parameters in the model. Finally, Section 6.5 sum-

marizes the results obtained such as estimates of the decision parameters, inferences

drawn from the preference estimation and the effect of cost and demand fluctuation

on the evolutionary characteristics of the network.

6.2 Literature Review

Various approaches have been used in the past to model airline route selection de-

cisions using publicly available data on route characteristics such as market demand,

operating costs, route length (examples include Jaillet et al. [65], and Balakrishnan
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et al. [66], Lohatepanont and Barnhart [67]). These approaches are either prescrip-

tive or descriptive in nature. In prescriptive approaches the objective is to provide

guidelines for airlines in making routing and fleet planning decisions to maximize

profit. In descriptive approaches the aim is to model or understand how airlines

make routing decisions. Dantzig [68] and Kushige [57] used a prescriptive approach

based on linear programming for fleet assignment on routes to maximize profits of

airlines. When the number of alternative routes is large, this approach breaks down.

Mixed integer programming was used by de Lamotte et al. [58] to study airline route

schedule planning. Balakrishnan et al. [66] developed a Lagrangian-based solution to

this mixed integer formulation of long-haul aircraft routing problems which selects

candidate routes from a large set of possible alternatives. A category of descriptive

approaches to model routing decisions of airlines is using network theory. Some of

the examples of efforts using network theory are multiplier model by Song et al. [69],

and machine learning techniques such as random forests, and support vector machine

by Kotegawa [59] to model network evolution from historical data.

None of the descriptive approaches mentioned above explicitly model the decisions

made by airlines in response to changes in factors that policy-makers can influence.

Decision-based models have been developed to estimate the importance of decision

variables that can be influenced by policy-makers. For example, Boguslaski et al. [70]

studied the entry pattern of Southwest Airlines using demand, distance, and cost

as explanatory variables. Sha et al. [71] developed a decision-making model for a

US-based airline using demand, operating costs, geographic distances between air-

ports, and hub or non-hub nature of airports as the inputs variables. While Sha et

al. [71] modeled demand as a continuously increasing input parameter, a later work

by Moolchandani et al. [72] developed models of passengers’ decision-making.

In addition to route characteristics, the potential competition from other airlines

also influences these decisions. Berry [73] builds on the discrete games model devel-

oped by Bresnahan [61] to include competition between airlines using the logarithmic

number of carriers operating service on a route as a measure of competition in the
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route. The main challenge while solving the aircraft routing problem using discrete

games is the presence of non-unique Nash equilibria. Non-unique Nash equilibria

makes it difficult to estimate the choice probabilities of strategy profile [74]. Ciliberto

and Tamer [62] proposed a model based on Gibbs sampling procedure to overcome

this challenge of non-uniqueness. A drawback of this model is that there are as many

latent variables as there are routes in the network. The number of latent parameters

grows in proportion to the square of the number of airports in the network leading

to problems such as over-fitting and poor predictive accuracy.

In summary, there have been numerous studies on airline decision-making on route

selection. To this literature we add consideration of competition and how it affects the

airlines’ choices. This model is an extension of the discrete choice model developed

previously by the authors, see Ref. [60].

6.3 Theoretical Model

This section describes the game theoretical approach that models the interaction

between airlines while making route selection decisions. Following the work of Cilib-

erto et al. [62] the entry decisions made by airlines on each route are modeled as

a discrete game with complete information played between two players. The payoff

achieved by a player on operating a service on a route depends on route characteristics,

preferences for route characteristics and the presence of competitors in that route.

Market factors are assumed to be known to the researcher. Here, the researcher is a

stakeholder extraneous to the airlines who is trying to understand the route selection

decision of the airlines and does not have access to all the private data that the airlines

possess while making such decisions. The aim of the model is to estimate the airline

preferences for route characteristics and the change in payoff due to the presence of

the competitor, based on the available data of decisions made in the past. In this

section, we present a theoretical model and an approach to estimate the parameters

in the decision model. The section is structured as follows: Section 6.3.1 describes
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the game-theoretic model of the route-level interaction, Section 6.3.2 describes the

forward model that characterizes the Nash Equilibria strategies of the players, and

Section 6.4 is on the numerical procedure to obtain the posterior distribution on the

target parameters based on the decisions made in the past.

6.3.1 Game Theoretic Model of Route Interaction

Airline interaction at the route level is modeled as a discrete game of perfect

information. The payoff matrix of this game is summarized in Table 6.1. The payoff

matrix describes the utility gained by each player for different strategy profiles. A

strategy profile is a combination of strategies undertaken by the players. The strategy

of a player k is denoted by the symbol sk, and on a route r, it is either to operate

(denoted as (sk(r) = 1)) or not to operate (denoted as (sk(r) = 0)) service on that

route.

i

Table 1.
Comparison of mechanisms in terms of its properties

(Player 2)
s2 = 0 s2 = 1

(Player 1)

s1 = 0 0, 0 0,
#»
X2(r)

#»
β 2 + ε2

s1 = 1
#»
X1(r)

#»
β 1 + ε1, 0

#»
X1(r)

#»
β 1 + l1 + ε1,

#»
X2(r)

#»
β 2 + l2 + ε2

Table 6.1.
Payoff matrix associated with the strategy profiles adopted by the players.

We assume that route decisions are independent, i.e., the decision on whether or

not to operate service on a route is independent of the decisions made on other routes.

However, it does depend on the connectivity and network-level influence of the route,

which is accounted for in our model. From one time step to the next, airlines make

decisions to add new routes or delete existing routes based on the utility attained.
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The utility attained by adding or deleting a route is affected by the decisions made

on other routes. The network properties of a route such as the degree of the terminal

airports, overall connectivity, and eigenvector centrality are affected by the decisions

made on other routes. The network structure, in turn, alters the demand and cost of

operating service on the route. However, this effect on utility is small as the fraction

of routes added or deleted in a year is normally under 10%, as observed from the BTS

T-100 dataset [18].

The utility attained by player k on operating a service on the route is written as the

sum of observed (V k
ij ) and unobserved (εk) components, as shown in Equation (6.1).

The observed component accounts for all the factors observed by the researcher such

as the market demand, route length, operating cost and presence of a competitor.

The unobservable component is only from the perspective of the researcher. From

the perspective of the players, this is a perfect information game.

Uk
ij(r) = V k

ij (r) + εk(r) (6.1)

The observed component consists of two parts (Equation (6.2)): a) a route specific

component that depends on the route characteristics ( ~Xk(r) ~βk), and b) a part that

accounts for the effect of the presence of the competitor (s−k(r)lk).

V k
ij (r) = ~Xk(r)~βk + s−k(r)lk (6.2)

In the first component, ( ~Xk) denotes the route characteristics and ( ~βk) denotes the

preferences of player k towards them. Following from Sha et al. [71], the main route

characteristics contributing to airline decisions are market demand, non-stop distance,

and operating cost. Therefore, these three route characteristics are considered in the

model. In the second component, s−k(r) denotes the strategy adopted by a competitor

of player k on route r, and lk denotes the change in the utility of player k in the

presence of its competitor. The term s−k(r)lk, by formulation, vanishes for a route if

the competitor decides not to operate service on that route. The parameter lk captures
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the difference in utility due to the presence of a competitor from being a monopolist

operator on a route. This parameter is different for different airlines depending on

the characteristics of the airlines and the market conditions. For example, full-service

airlines and low-cost carriers respond differently in the presence of competition. lk is

positive or negative depending on whether the presence of the competitor is beneficial

or harmful. Sugawara and Omori [74] showed that for Japanese airline market JAL

airlines favors those routes where ANA airlines have already been operating (lk > 0

for JAL airlines) whereas entry of JAL airlines reduces the profit of ANA airlines

(lk < 0 for ANA airlines).

The strategy profiles of both the players and the utility associated with them are

summarized as a payoff matrix in Table 6.1. In this matrix, each element has two

values of payoff, where the first value corresponds to the utility of the first player,

and the second value is the utility of the second player for the associated strategy

profile. Without loss of generality, the utility of each player for not operating a route

is assigned to be zero.

6.3.2 Nash Equilibria of the Game

The game described in Section 6.3.1 is played on each route. The rational strat-

egy is to operate a service on the route if the payoffs are positive, and not operate

otherwise. Following from Equations (6.1) and (6.2), the total utility attained by

player Ak on operating service on a route is obtained as ~Xk(r)~βk + s−klk + εk. The

best response strategy of a player Ak is to operate service on the route if the utility

is positive as shown in Equation (6.3). sk(r) = 1 denotes that player Ak operates a

service on route r and sk(r) = 0 denotes that player Ak does not operate a service on

route r.

sk(r) =





0 if ~Xk(r)~βk + s−klk + εk ≤ 0

1 if ~Xk(r)~βk + s−klk + εk > 0

(6.3)
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There are four possible pure Nash equilibria strategies corresponding to strategy

profiles ~S(r) = (s1(r), s2(r)) = (0, 0), (1, 0), (0, 1), and(1, 1). For a given payoff matrix

a unique Nash equilibrium strategy may or may not exist depending on the payoffs

associated with the strategy profiles. Assuming that the presence of the competitor

negatively affects the utility of operating service on the route for both the players

l1 < 0, l2 < 0, the Nash Equilibrium of the game in each route is expressed as a

function of unobserved variables, ε1, ε2 as shown in Figure 6.1. This is a reasonable

assumption as the entry of an airline in a route decreases the profit of the other airlines

operating in that route in the US domestic ATN [74]. The regions of Nash-equilibria

are different if the presence of a competitor increases the utility attained for any one

player. A detailed analysis of all such cases is provided by Bresnahan and Reiss [61].
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Figure 6.1. Nash Equilibria regions as functions of unobserved variables
assuming l1 < 0, l2 < 0.

Figure 6.1 is a plot of Nash-equilibria of the game described in Table 6.1 with

unobserved variables as axes (ε1 as the horizontal axis and ε2 as the vertical axis).
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Regions A, B, C, and D have unique Nash equilibria corresponding to equilibria

~S(r) = (s1(r), s2(r)) = (0, 0), (1, 0), (0, 1), (1, 1) respectively. Region E has multiple

Nash-equilibria.

The presence of regions with multiple Nash-equilibria makes the estimation of

model parameters harder. This is because if we assign distributional assumptions on

the unobserved variables (ε1, ε2) the choice probabilities on Nash equilibria are not

well-defined in the regions of multiple equilibria. We propose an approach based on a

network parameter called airport presence [63] to overcome this problem of regions of

multiple Nash-equilibria. The airport presence of an airline at an airport is the ratio

of the number of airports directly operated to by the airline to the total number of

airports directly operated to by all airlines from that airport. We assume that the

probability of a player entering the route conditional on the route falling in region

E is a function of the airport presence of the player in the route. Several authors

(e.g., Borenstein [75], and Levinine [76]) have argued that the level of operations in

an airport has a significant impact on the competitive position on the route operated

from or to the airport. Berry [63] investigated the effect of airport presence on the

oligopoly product differentiation. Our examination of historic decisions indicates that

the probability of a player entering is a non-linear function of airport presence. We

observe from the past data [18] that if the airport presence of a route was more

than 0.5 then the probability of retaining that route was quite high as observed from

data. As an example, Figure 6.2 shows the entry decision of United Airlines (UA)

as a function of its airport presence in the year 2012-13. A similar logistic functional

relation between entry decision of UA and airport presence was observed for other

years as well. Therefore, in region E, a logistic functional relation was assumed

between the probability of playing equilibrium (1, 0) and airport presence, as shown

in Equation (6.4).

pr = (1 + α1 + α2a
1(r))−1 (6.4)

This probability of equilibrium (1, 0) being played in route r is denoted by pr and

airport presence of UA is denoted by a1(r).
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Figure 6.2. Entry decision of United Airlines (UA) as a function of airport
presence in year 2013. All routes in a network formed by the top 132 US
domestic airports [77] was considered in this plot.

6.4 Numerical Procedure to Estimate the Parameters in the Theoretical

Model

To estimate the parameters of the decision model developed in Section 6.3, a

Bayesian approach is used with priors obtained using Discrete Choice Analysis and

likelihood obtained by data from historic decisions made by the airlines. The posterior

distributions of parameters, so obtained, are sampled using the standard MCMC

method based MH algorithm [64].

6.4.1 Priors using Discrete Choice Analysis (DCA)

Sha et al. [60] developed a model based on discrete choice random-utility theory

to estimate decision-making preferences of airlines. In DCA, the utility (Ui) for

alternative i consists of a component that is observed by the researcher (Vi) and

unobserved component εi which is the uncertainty, as shown in Equation (6.5).

Ui = Vi + εi (6.5)
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The observed component is deterministically estimated from the researcher’s point of

view through different techniques such as survey data and expertise. The unobserved

component captures the uncertainty due to unobserved attributes, measurement er-

rors, etc. For example, the airline route decision criteria not included in the model

are captured in this term. A linear form of the observed component was used by Sha

et al. as shown in Equation (6.6).

Vi = ~xT ~βi (6.6)

where ~x = (x1, ..., xn)T is a set of n explanatory variables for utility, and βi =

(βi1, ..., βik)
T is a set of weights that quantify the preferences of decision maker i.

Under random-utility maximization assumption, the decision maker prefers alterna-

tive i over j if Ui ≥ Uj. The probability of a decision maker choosing alternative

i is obtained as a function of the cumulative distribution of (εj − εi) as shown in

Equation (6.7) [78].

Pi = P (Ui ≥ Uj) = P (Vi − Vj ≥ εj − εi) (6.7)

Sha et al. used a multinomial logit model [79] that assumes εi to be indepen-

dent and identically distributed following a Gumbel distribution. The explanatory

variables were market demand, direct operating cost, distance and whether a route

connects hub airports or not. The preferences for the explanatory variables were then

estimated using the discrete choice model.

In our model, we use the estimates of the preferences obtained by running the

discrete choice model as parameters of the prior distribution. Discrete choice analysis

gives point estimates for preference parameters of the airlines. For preference param-

eters of each player towards the explanatory variables, a normal prior is assigned with

mean obtained using discrete choice analysis. For the parameter lk, a normal prior

is assigned truncated in the region (−∞, 0) since we assume that the presence of the

competitor decreases the utility for both the players. α1, α2 are given a normal prior.
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The parameters for prior on ~α are obtained by fitting a logistic curve between airport

presence and entry decision of Player A1 in all routes where (0, 1), (1, 0) equilibria

were played.

6.4.2 Likelihood

After assigning the priors, the next step is to obtain likelihood function of the

model parameters from the observed data. Assuming that the unobserved variables, ε1

and ε2, are independent and follow the standard normal distribution, the likelihood of

each of the strategy profile regions in Figure 6.1 is expressed as a function of the vector

of route characteristics ~Xk(r) and the preferences ~βk towards them. Equations 6.8

through 6.12 are the likelihood values of falling in each of the five regions [74]. In

these equations, φ denotes cumulative density of standard normal distribution and

Li denotes the likelihood of falling into region i in Figure 6.1.

LA(~β, ~Xr) = φ(− ~X1
r
~β1)φ(− ~X2

r
~β2) (6.8)

LB(~β, ~Xr) = {φ( ~X1
r
~β1)− φ( ~X1

r
~β1 + l1)}φ(− ~X2

r
~β2) + φ( ~X1

r
~β1 + l1)φ(− ~X2

r
~β2 − l2)

(6.9)

LC(~β, ~Xr) = {φ( ~X1
r
~β1)− φ( ~X1

r
~β1 + l1)}φ( ~X2

r
~β2 + l2) + φ( ~X1

r
~β1 + l1)φ( ~X2

r
~β2)

(6.10)

LD(~β, ~Xr) = φ( ~X1
r
~β1 + l1)φ( ~X2

r
~β2 + l2) (6.11)

LE(~β, ~Xr) = {φ( ~X1
r
~β1)− φ( ~X1

r
~β1 + l1)}{φ( ~X2

r
~β2)− φ( ~X2

r
~β2 + l2)} (6.12)
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The joint likelihood function assuming that routes are independent is given by

Equation 6.13.

L( ~X, ~S|~β, ~α, l1, l2) =
R∏

r=1

[{
(LA)I[

~S(r)=1](LB+λrLE)I[
~S(r)=2](LC+LE−λrLE)I[

~S(r)=3]

(LD)I[
~S(r)=4]

}{
1

1 + eα1+α2ak

}I[~S(r)=2,3]
]

(6.13)

In this equation, R is the total number of routes in the network and Li are defined

in Equations 6.8 through 6.12. λr is a Bernoulli variable with airport presence as the

parameter (Equation 6.4.2).

λr ∼ Bernoulli(pr)

λr = 1 when (1, 0) equilibrium played and λr = 0 when (0, 1) is played.

6.4.3 Posterior

The joint posterior density function for the parameters ~α, and ~β is proportional

to the product of prior and likelihood as shown in Equation 6.14.

Y (~β, ~α, l1, l2| ~X, ~S) ∝ π(~α)π(~β)π(l1)π(l2)L( ~X, ~S|~β, ~α, l1, l2) (6.14)

where π(~β), π(~α), and π(~lk) denote the prior distribution on preference parameters

on explanatory variables, airport presence, and interaction factor respectively, and L

is the joint likelihood function.

6.4.4 Sampling posterior distribution

The posteriors on the parameters ~β, l1, and l2 are sampled using the standard

MCMC method based MH algorithm [64]. While sampling ~α the range is limited so
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that it gives a valid probability sample. A distribution similar to the prior with the

same mean and standard deviation of 5000 times lower than the prior was used as

the jump function in the MH algorithm.

6.5 Estimation Results of the Empirical Study

This section shows the results of Bayesian estimation on preference parameters.

The results from the discrete choice analysis were used to obtain the parameters for

the prior distribution. Discrete choice analysis provides separate preference parameter

values for route addition and route deletion. A weighted average of this (based on

the fraction of operating and non-operating routes) were used to obtain the prior

parameter. The standard deviation was set high so that the prior remains flat and do

not bias the posterior. Thus the resulting posterior distribution is inferred primarily

from the real data. The parameters of the prior distribution for the three explanatory

variables are tabulated in Table 6.2. The discrete choice analysis do not distinguish

between airlines and therefore the same parameter values were used in prior for both

the airlines.

Table 6.2.
Statistics of the posteriors of decision parameters (after burn-in period).
Prior Mean (add) are the results obtained on preference parameters by
running the discrete choice model for route addition. Prior Mean (del)
are the same results for route deletion.

Parameter Prior mean Prior stdev

Demand 0.055 10

Demand 0.469 10

Distance -0.044 10

A total of 1 million samples were used in the Metropolis-Hastings algorithm to

estimate the posterior distribution of the preference parameters. For the proposal

distribution a standard deviation 5000 times smaller than the prior was used. This

resulted in a reasonable acceptance rate of 33.4% for the posterior samples when
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Metropolis-Hastings MCMC was implemented. The raw MCMC posterior samples

for the preference parameter towards the explanatory variables of both the airlines

are shown in Figure 6.3.

Figure 6.3. Raw MCMC posterior samples of the preference parameters
towards cost, market demand, and distance of both the airlines.

2000000 samples were taken as the burn-in period. For the filtered samples, auto-

correlation plots were made. Figure 6.4 shows the autocorrelation between samples

that are adjacent to each other or spaced by a certain number lag. Based on the

autocorrelation plot, one in every 10000 posterior sample is picked.

Figures 6.5 and 6.6 show the posterior samples after removing the samples in

burn-in period and after accounting for autocorrelation.

Table 6.3 compares the statistics of the posterior on preference parameters with

the prior. The prior mean corresponds to the estimates of the preference parameters
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Figure 6.4. Plot showing average autocorrelation between samples that
are lag spaced apart for each all the parameters.

using discrete choice analysis for the same year. Discrete choice analysis provides two

sets of parameters, one for non-operating routes for route addition and the other for

operating route for route deletion. The posterior samples on preference parameters

quantify the preferences of the airline towards explanatory variables such as cost (unit:

cent/nautical mile/seat), demand (unit: 1000 passengers), and distance (unit: 1000

nautical miles). For the interaction parameter the prior parameters correspond to

the intercept of discrete choice analysis result. For the coefficient of airport presence

the prior parameters were obtained by curve-fitting the parameters α1 and α2 on the

data for the previous year.

From Table 6.3, it is observed that both the players under competition have a

positive coefficient for demand and negative for the cost and distance. Higher the
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Table 6.3.
Statistics of the filtered posterior samples. Prior Mean (add) are the
results obtained on preference parameters by running the discrete choice
model for route addition. Prior Mean (del) are the same results for route
deletion.

Parameter
DCA
(add)

DCA
(del)

Posterior
mean
(UA)

Posterior
mean
(DL)

Posterior
std dev
(UA)

Posterior
std dev
(DL)

Demand (β2) 0.087 -0.23 3.11 0.47 0.49 0.38

Cost (β1) 0.74 -1.97 -5.01 -2.17 0.93 0.65

Distance (β3) -0.04 -0.17 -6.66 -3.84 0.44 0.37

Interaction -1.91 1.49 -1.22 -0.17 0.35 0.18

demand that a route brings in and lower the operating cost involved in adding the

route, higher is the utility of adding that route. The effect of increasing cost negatively

affects the probability of the route getting added. Furthermore, the magnitude of

preference parameter for cost was one order of magnitude higher than the parameter

for demand which means that cost had a higher significance in the route selection

decision. This is encouraging from policy designer standpoint as cost is the variable

that they can directly control. Demand is governed more by market factors. UA had

a larger decline in the payoff from the presence of the competitor as compared to DL.

6.6 Conclusions

The competition between airlines at route level is modeled as discrete games of

perfect information and the parameters of the model are estimated using an approach

based on airport presence. Although the results presented in this paper are for com-

petition between UA and DL, the approach can be extended to study the competition

between any two airlines. The approach can also be extended to include more than

two airlines. In two player case there is only one region of non-unique Nash equi-

librium. If there are more than two players, then there will be multiple regions of

non-unique Nash equilibrium and likelihood functions of each of those regions have
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to be addressed separately. A limitation of the approach is that it does not take

into account the effect of decision made on a route in the current period on the de-

cision made on other routes. This is a reasonable assumption as addition or deletion

happens only in less than 10 % of the routes from one period to the next.
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7. POLICY DESIGN USING PREDICTION OF EVOLUTIONARY DYNAMICS

In Chapter 6 a model to understand how airlines make decisions was developed. The

dataset of historic decisions and cost model was used for Bayesian estimation of model

parameters. Now, having developed an airline route selection decision model we use

it to predict the effects of cost and demand on the evolution of the network topology.

Bresnahan had developed discrete games approach; however, such approach relies

on Gibbs sampling including large number of latent variables. Inclusion of such large

number of variables leads to over-fitting. Our model on the other hand uses relatively

only a small number of variables. In terms of accounting for airline decisions to un-

derstand evolution of Air Transportation Network there are other competing models

such as discrete choice analysis. The proposed model is found to be more accurate

than competing models that do not consider the effect of competition particularly on

routes where airlines actually made a decision to add or delete a route.

7.1 Route prediction accuracy

To evaluate the discrete games model, route prediction accuracy was measured

and compared with the discrete choice model. Route prediction accuracy of an airline

is defined as the fraction of routes where the model accurately predicts the entry

decision of the airline. To obtain this accuracy a route-by-route comparison of the

model prediction and the actual decision was made. For the period 2006-07, the

model was trained using decisions made by both the airlines on 500 routes (of the

8646) in the year 2006. These 500 routes were a random sample consisting of all the

four Nash equilibria. The trained model was then used to predict the accuracy in

the year 2007. A comparison of the prediction accuracy obtained using the current

model with that of discrete choice is tabulated in Table 7.1. The overall accuracy of
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prediction by discrete choice analysis from years 2006-13 is 90.6% and the accuracy

for the current model is 77.1%.

Table 7.1.
Comparison of overall prediction accuracy of discrete choice analysis and
current model.

Period Discrete choice UA (current) Delta (current)

2006-07 90.4% 89.1% 85.9%

2007-08 89.3% 89.3% 85.8%

2008-09 89.6% 90.3% 86.7%

2009-10 91.8% 89.8% 78.0%

2010-11 90.1% 90.4% 79.2%

2011-12 90.1% 88.0% 79.3%

2012-13 90.5% 87.2% 77.6%

Though the overall accuracy of discrete choice is better than the current model,

in routes where an addition or deletion decision was made (we call this dynamic

accuracy) the current model performs better than the discrete choice model. This is

because discrete choice prediction bases itself on the current status of the route. It

relies on two separate models – one for route addition and the other for route deletion.

Implicitly, the information of the current status of the route increases the prediction

accuracy achieved using discrete choice model. From one period to the next, addition

or deletion happens only in less than 10% of the routes and the discrete choice model

predicts that the route status is unchanged in a significant majority of the routes.

For example, in the period 2006-07 among the 2591 existing routes, only 53 routes

were selected for deletion and only 107 new routes were added to the network. Even

a model that takes information about route status in the previous year and predicts

no changes to happen would yield a 94% accuracy. But the real use of the model is to

understand how airlines make routing decisions. Therefore the merit of the model is

gauged by comparing the accuracy only on those routes where route status changed

from one period to the next. We call this dynamic accuracy of the model. The model
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that predicts no changes in the route status will have a dynamic accuracy of 0%. The

discrete choice model had an average dynamic accuracy of 49.1%, and the current

discrete games model has an average dynamic accuracy of 71.1% for UA and 69.9%

for DL from the years 2006-2013. The accuracy achieved in individual years is listed

in Table 7.2. This increased accuracy justifies that including the effect of competition

helps better understand how airlines make addition and deletion decisions.

Table 7.2.
Comparison of dynamic prediction accuracy of discrete choice analysis
and current model.

Period Discrete choice UA (current) Delta (current)

2006-07 50.5 % 70.9 % 74.9 %

2007-08 40.0 % 65.7 % 74.3 %

2008-09 55.3 % 75.3 % 76.5 %

2009-10 59.1 % 77.9 % 75.6 %

2010-11 43.0 % 62.3 % 59.4 %

2011-12 47.4 % 65.6 % 60.4%

2012-13 56.7 % 64.9 % 63.6 %

Now, between 80% and 90% of the routes are non-operational and therefore, pre-

diction accuracy alone as a metric is not sufficient to assess the performance of the

model. The model was further validated using ROC curves. Figure 7.1 show the

ROC curves for prediction of route entry decision for both the airline. If either UA

or DL is operating the route then the route is operational, and the route is non-

operational in a period only if neither UA nor DL operate in that period. This ROC

curve had an Area Under Curve (AUC) of 0.74. Figures 7.2and 7.3 show ROC curves

for prediction of route entry decision made by Player 1 (UA) and Player 2 (DL) re-

spectively. The predictive model for Player 1 had an AUC of 0.77, whereas Player

2 our model attained an AUC of 0.70. The AUC for the predictive models of each

airline were between 0.7 and 0.8. It is neither an excellent model (AUC≥ 0.9) nor a

good model (0.9 >AUC≥ 0.8). But it is neither poor(0.7 >AUC≥ 0.6) nor fail model
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(0.6 >AUC≥ 0.5). This means that the model established is able to ’fairly’ capture

the decision making behavior of the airlines.

Figure 7.1. ROC curve for prediction of route entry decision for both the
airlines.

7.2 Policy experimentation discussion

Based on the estimates for airlines’ preferences of explanatory variables such as

demand, cost, and distance the evolutionary behavior of the air transportation net-

work is studied in this section. In particular, we focus on the effect of the explanatory

variables on the Nash-equilibrium.
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Figure 7.2. ROC curve for prediction of route entry decision made by
Player 1 (UA).

7.2.1 Forward simulation

In Section 7.1 we validated the prediction accuracy of the model based on the es-

timated preferences towards explanatory variables. Since the model is able to predict

the airline route decisions using only the explanatory variables with high accuracy we

hypothesize that the model should capture the decision making behavior of the air-

lines on varying the explanatory variables. The three explanatory variables that were

considered in our analysis were market demand, operating cost, and route distance.

We perform forward simulation by varying the explanatory variables: market

demand and operating cost. Route distance is excluded from the analysis as it is fixed

and neither the policymakers nor the market forces can alter the route distance from



159

Figure 7.3. ROC curve for prediction of route entry decision made by
Player 2 (DL).

one period to the next. While varying the explanatory variables, it was performed at a

network level i.e. all the routes are simultaneously varied and network level aggregated

effects are studied. While varying the operating cost the change was uniform for every

route whereas for market demand the change for a route was in proportion to the

existing demand in that route. This is because for passenger demand variations

between period are usually in proportion to the congestion. For example, a busier

airline route normally has more demand fluctuation between period in comparison to

a less sought after route. On the other hand, for operating cost if airport charges or

landing fees is increased then it is absolute for all routes and not in proportion to the

existing operating cost for a route. It may be debatable as in practice the variation

might be a combination of proportional and uniform; however, this assumption of
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relative or absolute does not fundamentally change the observation and conclusions

drawn from varying the explanatory variables. The assumption of distinguishing

proportional from absolute was made only to mimic the variations in practice while

performing the forward simulation.

Varying operating cost

Based on the decisions made by the two airlines (whether to operate or not to

operate), there are four possible outcomes or Nash equilibria strategies in each route.

These are (0, 0), (1, 0), (0, 1), and (1, 1); where the first entry denote the strategy

of Player 1 and second entry denote the strategy of Player 2. Figure 7.4 shows the

number of routes where each of the four Nash equilibria strategies were played as

a function of operating cost incurred by Player 1. The operating cost is increased

uniformly for all the routes. In the figure, std dev indicate the standard deviation in

the distribution of cost across all routes in the network the network. X-axis is the

number of standard deviations by which the operating costs were increased for Player

1.

Through Figure 7.5 we explain the Nash equilibrium behavior with varying op-

erating cost. This figure is constructed to analyze the outcome when operating cost

of Player 2 is increased. From the posterior samples we obtained that the preference

parameter towards cost for Player 2 had a mean value of −2.17. This means Player

2 had a negative preference towards higher cost. The solid lines partitions the Two-

Dimensional space formed by the unknown variables ε1 and ε2 to five regions. Four of

the regions have unique pure Nash equilibrium whereas the central region do not have

a unique Nash equilibrium. The blue dotted line indicate the new boundaries demar-

cating the equilibrium regions after increasing the operating cost of Player 2. All the

horizontal boundary lines shifts upwards in the vertical direction whereas all the ver-

tical boundary lines are unchanged. This is because the coordinates ( ~−X1~β1, ~−X2~β2)

and the lengths l1, l2 uniquely define the regions in the Two-Dimensional space. The
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Figure 7.4. Comparing the number of routes in each Nash-equilibrium
was predicted by increasing the operating cost of Player 2 (DL).

preference parameters for both the players (~β1, ~β2) are unchanged as they are char-

acteristic of the airlines. Since the operating cost of only Player 2 is changed, ~X1

also remains constant. Therefore, ~X2 is the only variable which defines the vertical

position of the boundaries. Increasing operating cost shifts the boundary lines along

the vertical axis (ε2) in the positive direction as the coefficient associated with cost for

Player 2 is negative. On increasing the operating cost of Player 2, area corresponding

to region of (0, 0) Nash equilibrium increases as indicated by area A2. In Figure 7.4

we observe that the number of routes corresponding to (0, 0) Nash equilibrium in-

creases as expected. On the other hand, the area A2 (along with some area swept

by the central region) is removed from the likelihood region (region C in Figure 7.5)
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Figure 7.5. Effect on the likelihood regions of Nash-equilibria by increas-
ing the operating cost of Player 2.

associated with equilibrium (0, 1). Thus, the number of routes with (0, 1) equilibrium

decreases as observed from Figure 7.4. Region D corresponding to equilibrium (1, 1)

decreases in area by A2 as shown in Ffigure 7.5. ε1 and ε2 are modeled as random

variables drawn from standard normal distribution and the product cumulative den-

sity functions of the normal distribution corresponding to the area of the region gives

the likelihood (and in turn probability) of that equilibrium being played as discussed

in Equations 6.8 to 6.12. However, in the routes considered for prediction there were

no routes where (1, 1) equilibrium was played. The predictive model predicts this

outcome with the actual values of explanatory variables. Increasing cost further will

further diminish the probability of (1, 1) equilibrium being played closer to zero. As a

result the number of (1, 1) equilibrium remains at zero on increasing cost as observed

in Figure 7.4. The area under (1, 0) equilibrium in region B of Figure 7.5 increases
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Figure 7.6. Comparing the number of routes in each Nash-equilibrium
was predicted by increasing the operating cost of both the players.

and this is seen from an increased number of routes falling in (1, 0) equilibrium in

Figure 7.5.

Another interesting observation is that once the number routes with (0, 1) equilib-

rium goes to zero (around 1.1 std dev in Figure 7.4 the number of routes where (1, 0)

equilibrium is being played decreases based on the assumptions made in our model.

This is because once all the routes where (0, 1) equilibrium was being played converts

to (0, 0) or (1, 0), increasing cost further does not add any additional area into (1, 0)

equilibrium. However, the contribution of central region decreases on increasing the

cost further. Area of the central region remains the same as parameters l1 and l2 are

independent of the operating cost. However, the likelihood value associated with the
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same area decreases because of the nature of Gaussian density function. For example,

φ(1.5)− φ(1) is higher than φ(2.5)− φ(2), where φ is cumulative density function of

standard normal.

The interpretations through Figure 7.5 were provided on increasing the operating

cost of Player 2 only. However, if the increase was made for operating cost of Player 1

instead the effects are very similar except that now the number of routes where (1, 0)

equilibrium is being played goes down to zero. Figure 7.6 shows the effect when the

operating costs associated with both the players are increased. All equilibria except

(0, 0) goes down to zero eventually. Number of routes with (0, 1) equilibrium drops

faster compared to the routes with (1, 0) equilibrium. This is because the preference

parameter towards cost for Player 1 has a mean value of −5.01, whereas for Player 2

has a mean value of −2.17. Since Player 1 has a higher magnitude for the preference

parameter, varying the cost has a bigger effect on the utility function of Player 1

as compared to Player 2. Therefore the number of routes by Player 1 drops more

drastically towards zero as compared to Player 2.

Varying market demand

Figure 7.8 shows the number of routes where each of the four Nash equilibria

strategies were played as a function of market demand for Player 1. The market

demand for a route is increased in proportion to the original demand of that route.

Figure 7.7 explains the effect of increasing the market demand of Player 1 on the

five regions. As observed from Figure 7.7 increasing market demand for Player 1

shifts all the vertical lines demarcating the boundaries of the five regions along the

negative ε1-axis direction. The shift is in the negative direction as the preference

parameters towards demand has a positive coefficient for Player 1 from the predictive

distribution results. Similar to the operating cost, since the market demand for Player

2 is unchanged the horizontal lines are unchanged.
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Figure 7.7. Effect on the likelihood regions of Nash-equilibria by increas-
ing the operating cost of Player 2.

When market demand for Player 1 is increased area A1 gets added to region D

as observed in Figure 7.7. Unlike the operating cost where the number of routes

with (1, 1) equilibrium being played remained zero, this results in a few routes with

(1, 1) equilibrium. Figure 7.9 shows the number of routes where each of the four

Nash equilibrium strategies was played as a function of market demand for Player 2.

The effects are very symmetrical to the one where market demand of Player 1 was

changed. Preference parameter for demand had a mean value of 3.11 for Player 1

and 0.47 for Player 2. Thus Player 1 has a relatively high preference coefficient for

demand in comparison to Player 2. This result in an interesting phenomenon. Even

though the number of routes where Player 1 exclusively operates or those with (1, 0)
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Figure 7.8. Number of routes in each Nash-equilibrium due to propor-
tionally increasing the market demand of Player 1 (UA).

equilibrium decreases to zero as the market demand for Player 2 increases, Player 1

is able to compete and operate in a few routes i.e. there are a few routes with (1, 1)

equilibrium even when market demand associated with Player 1 is increased to very

high values. This was not observed when market demand for Player 1 was increased.

Player 1 unanimously dominated all the routes.

Figure 7.9 shows the number of routes where each of the four Nash equilibria

strategies were played when the market demand of both the players are increased.

Unlike all the previous cases, this result in a a large number of routes with (1, 1)

equilibrium. Number of routes with (0, 0) equilibrium monotonically decreases with

increasing market demand. An interesting observation is that, on increasing the mar-
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Figure 7.9. Number of routes in each Nash-equilibrium due to propor-
tionally increasing the market demand of Player 2 (DL).

ket demand of both the player simultaneously number of routes with (1, 0) equilibrium

increases whereas those with (0, 1) equilibrium decreases. This is because the Player

1 had a much higher preference coefficient for demand in comparison to Player 2 and

therefore is able to attain higher gains from an increasing market demand in com-

parison to Player 2. This results in a large number of routes where only Player 1

operates.

From policy designers’ standpoint, the only variable that can be directly influenced

is operating cost. Non-stop distance is a geographic factor, which is fixed for every

route. Demand is governed more by market factors and is difficult to be directly

influenced. Through indirect approaches such as installing a cheap and fast alternate
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Figure 7.10. Number of routes in each Nash-equilibrium due to propor-
tionally increasing the market demand of both the players.

mode of transportation between the origin and destination, existing demand for a

route can be modified. However, it is much harder to directly influence. Cost is

relatively easier to directly influence by levying taxes, imposing penalties for entering

and operating service on congested routes, and airport regulation (such as single-till

or dual-till [80]).

The evolutionary model developed here can be used to study how the network

evolution can be influenced by influencing the decision parameters. We conducted

simulation experiments by varying the cost and demand values of each route. The

number of routes has direct implications on network properties such as robustness,

resilience, and connectivity. A unit in x-axis indicates an increase in the operating cost
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or demand by one standard deviation of the network distribution. When the demand

for UA (Player 1) is increased, fewer routes will have (0, 0) as Nash-equilibrium. The

number of routes where equilibria (1, 0) is played increases whereas those where (0,1)

is played decreases. Similarly, decreasing the cost of UA or decreasing the demand

for DL (Player 2) decreases the number of routes where (0, 0) and (0, 1) equilibria

are played. The number of routes was more sensitive to demand than cost as seen

from these figures. Though the preference estimate for the cost (-0.74) had a larger

magnitude than demand (0.05), varying demand by one-standard-deviation seemed

to have a higher influence on the number of Nash-equilibria than cost. This is because

the magnitude of demand is higher than cost.

7.3 Conclusions

Although the overall accuracy of the discrete choice model is higher, the discrete

games-based approach is more accurate in predicting the airline decision routes where

an addition or deletion was actually made. The latter accuracy is more important

for the objective of the model which is to guide policymakers to understanding how

airlines make route selection decisions.
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8. CLOSURE

8.1 Summary of dissertation

In this dissertation, a mechanism design approach was established specifically for

two different complex engineered systems: resource allocation in cloud-based design

and manufacturing system and guide policymakers in air transportation system by

understanding how airlines make decisions.

In CBDM, three different scenarios were analyzed from the viewpoint of strategic

nature of the interacting agents. Based on the analysis and how well the require-

ments in the scenario match with the properties of the mechanism, best matching

mechanisms were recommended for each of the three scenarios. The performance of

these mechanisms differ in resource-scarce and resource-surplus conditions. Simula-

tion studies were used to draw insights on the relative performance of the mecha-

nisms under various resource conditions. A theoretical framework was established

for optimal scheduling of the recommended matching mechanisms. The theoretical

framework was made under certain simplifying assumptions such as deterministic ar-

rival of service seekers and constant job-processing time. The effects of relaxing these

assumptions on the optimal matching period were further studied.

In ATS, a discrete games based model was established to model the topologi-

cal evolution of the network based on routing decisions made by the airlines. The

parameters of the discrete games were estimated using MCMC numerical sampling

techniques. While estimating those parameters the presence of non-unique Nash equi-

librium creates additional challenges. An airport presence based tie-breaking rule was

established to address this challenge. Prediction accuracies and ROC curves were used

to validate the model. Based on the predictive model for network evolution, policy

experiments were conducted to provide recommendations for policymakers.
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8.2 Limitation and Opportunities for Future Work

Mechanism design was conventionally applied in economic systems. While ex-

tending the techniques and methods developed in one set of applications to another,

this brings additional challenges and research gaps that needs to be addressed. While

few of such challenges were addressed in this thesis there are still other research gaps

that needs further investigation.

Resource allocation in CBDM offers a new set of challenges that need to be ad-

dressed. Most of these are mechanism design related specific issues that arises to

inherent limitations or assumptions underlying existing mechanisms.

Firstly, existing bipartite matching mechanisms are based on the assumption that

the alternatives of each participating agents are substitutes and not complements. In

conventional economic applications this is a valid assumption. For example in kidney

exchange two potential donors are substitutes from the standpoint of the receiver.

Similarly, in matching students to school or residents to hospitals two different stu-

dents are substitutes. Whereas in CBDM there are scenarios where the alternatives

are complements instead of substitutes. For example the designer might be having

multiple parts that needs to be printed and assembled to achieve the final objective.

The utility of being matched to a machine-owner to get a sub-component in the as-

sembly printed would depend on whether or not the designer was able to get matched

to a suitable machine-owner to print other sub-components in the assembly. Here the

alternatives are not clear substitutes. Another example, is that of a machine-owner

trying to print multiple designs in the same run to save time and increase profit.

There would be multiple designer alternatives offering designs that are complement

to one another and could be printed simultaneously in the same run. In such a sce-

nario, the designers are complements and not substitutes. Another research gap is to

integrate the matching mechanisms along with the task of resource discovery.

Resource discovery is a challenging task in CBDM as it is impossible for all agents

to provide an exhaustive list of their alternatives. One way of achieving this is to
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extract the general preference characteristics of individual agents towards attributes

of their alternatives and based on how well the alternatives satisfy these requirement,

use a utility-based approach to generate the preference rank ordering. However, some

of the properties of existing bipartite matching mechanism breaks down when such an

approach is used to elicit the preferences of the participants. For example, the deferred

acceptance mechanism does not remain strategy-proof anymore when preferences are

elicited in the form of preferences towards attributes instead of preferences towards

alternatives. There are ways to game the system. There is a need to design strategy

proof mechanisms when agents reveal attribute preferences instead of alternatives.

Another limitation of bipartite matching mechanisms is when there is exchange of

transferable utility such as money. There are methods in which participating agents

can collude to game the system. One such strategy is termed as ring-formation where

a subset of agents exchange money between them for selfish gains [3].

A key assumption made in this thesis while modeling resource allocation in CBDM

was that the resource are perfectly divisible. A designer or set of designers were

matched to machine owners based on preferences and objectives of both the agents.

However, there may be scenarios where resources are continuous. For example, if the

resources are modeled as time-slots in the machines then this cannot be perfectly

divided among the resource seekers. It would be interesting to explore extensions

of techniques such as Knapsack auctions to account for this continuous nature of

resources.

Another limitation of the approaches established in this thesis is in the optimal

multi-period implementation of matching mechanisms. In the theoretical framework,

we ignored the temporal variation in utility. We assumed that the utility attained

by designers on being matched to a machine owner does not change by the time

the designer is matched to a particular machine owner. For example, if the designer

needed to get the part printed urgently and was not matched by a specific date then

the utility drops to zero after the desired date. In other cases, the utility might

exponentially decay with waiting time. We ignored this temporal fluctuation. This
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is a valid assumption in CBDM application as the time scales of implementation

are small. However, if the framework that we established is extended into other

applications such as kidney exchange program then it is important to analyze the

effects of relaxing the assumption. One effect of such temporal variations in utility

is the effect that several desirable properties of the mechanism breaks down. For

example, individually rational mechanisms such as Top-Trading Cycle or Defferred

Acceptance cease to be individually rational since the designer might be better off

not being matched if the utility drops to zero. It will be an interesting to analyze the

interplay between satisfaction of properties and optimality in matched objectives in

applications where temporal variations are significant.

Addressing such limitations not only enables effective application of the mecha-

nism design principles in engineering systems but also result in further advancement

of the scope of existing mechanisms. For example, for resource allocation in CBDM

the bipartite matching mechanisms needed to be implemented multiple times and

the scheduling the period of interval at which the matching mechanism are imple-

mented was important. However, there are no existing studies on optimal scheduling

of multi-period implementation of matching mechanisms. In this thesis we established

a theoretical framework for optimal scheduling of such mechanisms. The results and

insights are highly generic and generalizes into applications even outside of CBDM

if the mechanisms are implemented repeatedly in a multi-period fashion. Similarly,

the policy recommendations for airlines provides valuable insights while developing

network policies for other complex network that evolves based on decisions made by

competing agents.

In ATS, a limitation on the discrete-games based predictive model that we devel-

oped is that we assume that the decision made on a given route in the current period

is independent of the decisions made on other routes in the current period. How-

ever, this should not be confused with decisions made on other routes being ignored

completely. The decisions on other routes is considered in our approach through the

network level parameter called airport presence. Airport presence of a route indicates
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the average degree of the terminal airports of that route. This shows how well con-

nected the route is and this has an influence on the route decision. But this effect is

accounted for based on the state of the network in the previous period and not based

on decisions on other routes in current period. This is a reasonable assumption as

addition or deletion happens only in less than 10 % of the routes from one period to

the next based on BTS data [18]. Therefore, the network properties like connectivity,

centrality do not change drastically from one period to the next.

The discrete games model used in this thesis considers only competition between

two players. This is not a limitation of the approach. There are theoretical frame-

works for discrete games model for more than two players. It would be interesting

to construct airport presence sampling techniques to solve for those parameters. The

interaction effects between airlines when more than two airlines are involved is also a

potential area for further investigation.
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