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ABSTRACT
A central issue in two-sided matching markets such as

Cloud-Based Design and Manufacturing (CBDM) where agents
interact over a long period of time is the design of optimal match-
ing period during recursive implementation. Existing literature
provides mechanisms that satisfy useful properties such as stabil-
ity in a single matching cycle, but they lack studies on the effect
of the period of matching cycle on the optimality. To address this
gap, we perform simulation studies on a synthetic CBDM sce-
nario where service seekers arrive as a Poisson process with a
fixed number of service providers offering resources. We iden-
tify the optimal matching period and assess its robustness using
sensitivity studies. Optimality is measured in terms of utility ob-
tained by the agents, the number of matches and fairness of the
utility distribution. We show that a matching period equal to the
ratio of the number of service providers to the arrival rate of
service seekers is optimal.

NOMENCLATURE
S Set of service seekers.
P Set of service providers.
|S| Number of service seekers.
|P| Number of service providers.
s−i Set of all service seekers excluding service seeker si.
p− j Set of all service providers excluding service provider p j.
Rsi Preference ordering of service seeker si over its alternatives.

Rp j Preference ordering of service provider p j over its alterna-
tives.

j �i k i prefers j to k.
j �i k i strictly prefers j to k.
M(si) Service provider to which service seeker si is assigned

through matching mechanism M.
X Set of attributes.
f (X) Single attribute utility towards attribute X .
ui j utility attained by agent i being matched to alternative j.
wki Weight of attributes Xk for agent i.
t Time period of each matching cycle (in days).
tk time of implementation of kth matching cycle.
Msi(tk) Service provider to which service seeker si was

matched in kth matching cycle.
M−1

p j
(tk) Service seekers being served by service provider p j in

kth matching cycle.
T Total time duration during which matching mechanisms will

be implemented (in days).
τi j Time to process service request of service seeker si by ser-

vice provider p j

τ Average service processing time
λ Mean arrival rate of service seekers.
µ j Mean service processing time of service provider p j.
h j Working hours of service seeker p j per day.
|M| Total number of stable matches possible under mechanism

M.
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1 Introduction
Cloud-Based Design and Manufacturing (CBDM) refers to

a product realization model that enables collective open innova-
tion and rapid product development with minimum costs through
a social networking and negotiation platform between service
providers and consumers [1]. One of the key characteristics of
CBDM is on-demand self-service where users such as designers
interact with other users such as manufacturers on a self-service
basis. Thus CBDM involves interaction between two groups of
participants: service seekers (or designers) and service providers
(or manufacturers). Service seekers need to manufacture or use
computational resources, but do not possess the capabilities to
do so. Service providers own and operate equipment or other re-
sources and are ready to offer users instantaneous access to these
capabilities. CBDM needs to provide a platform to facilitate such
interactions.

Conventional resource allocation methods are inappropriate
for matching resources to service seekers in decentralized scenar-
ios because the designer of the algorithm makes implicit assump-
tions that the participating agents will act as instructed. With the
emergence of distributed and cloud-based manufacturing with in-
dependent resource providers, this assumption is no longer valid.
It is more reasonable to assume that each participating agent will
manipulate preferences for selfish gains at the cost of efficiency
of the mechanism. The field of ‘mechanism design’studies on
designing algorithms where agents act rationally. The misrep-
resentation of information by individuals (or group of) is called
‘strategic behavior’and the mechanisms that penalize such be-
havior are said to be ‘strategic-proof’ [2]. Efficiency loss because
of strategic behavior need not be small and the cost of not having
a strategy-proof mechanism is much harder to measure.

In addition to strategy-proofness, other useful properties of
mechanisms include stability [3], individual rationality [4], con-
sistency [5], monotonicity with respect to demand [6], and sup-
ply [7]. There is no mechanism that satisfies all these proper-
ties [4]. Therefore, mechanism must be specifically designed for
each application. In an earlier work, the authors, modeled the
problem of resource allocation in CBDM as a bipartite matching
problem [8] and proposed best matching mechanisms [9] among
existing mechanisms in different CBDM scenarios by analyzing
their properties in the context of requirements in different CBDM
scenarios. However, in a stochastic environment like CBDM
where the arrival of service seekers and availability of service
providers is a continuous process there are no studies on the op-
timal frequency of implementation of such mechanisms. There-
fore, additional advances need to be made on existing mechanism
design literature to develop optimal matching mechanism suited
for the requirements of CBDM.

The job scheduling literature focuses on resource allocation
in such a stochastic environment. For example, Smith [10] pro-
posed a job scheduling algorithm for a single machine. However,
they assumed that the mechanism is centralized with complete

information on all the jobs, their significance, and processing
time. Anderson and Potts [11] extended it to a scenario where
the algorithm does not have access to complete knowledge of
all the jobs. In all the above job scheduling algorithms, the de-
signer of the algorithm makes implicit assumptions that the par-
ticipating agents will act as instructed. Nisan and Ronen [12]
proposed a job-scheduling algorithm that accounts for the strate-
gic behavior of the participants. Heydenreich et al. [13] extended
this idea to a strategic setting where the participants may manip-
ulate the job processing time, arrival time of job, and the cost of
waiting time. However the resulting mechanism is not decentral-
ized and the equilibrium of the game is a myopic best response
based (a weaker condition than Dominant strategy equilibrium).
Christodoulou et al. [14] extended the LP-relaxation job schedul-
ing problem into a mechanism design framework to also account
for the strategic behavior of the participants. Jain et al. [15] de-
veloped an algorithm for allocating jobs in the cloud which is
truthful-in-expectation which is primarily suited for cloud com-
puting applications. Andelman et al. [16] showed a Fully Poly-
nomial Time Approximation Scheme algorithm for scheduling
jobs on a fixed number of machines that elicit truthful revelation
with the goal of minimizing overall completion time.

In all of the job-scheduling algorithms the focus is only on
optimizing some global objective function such as overall com-
pletion time or cost and they ignore individual objectives of the
independent agents. Moreover, they do not have useful proper-
ties such as stability, individual rationality, and consistency.

The field of mechanism design focuses on designing mecha-
nisms that have useful properties, but they lack studies on the op-
timal frequency of implementation of such mechanisms. In situ-
ations where agents repeatedly interact with one another, manip-
ulations and strategic behavior are much more probable because
of the knowledge about historic data. Therefore, there is a need to
identify optimal frequency of implementation of mechanisms so
that they satisfy useful properties and produces optimal matches
when implemented in situations where agents repeatedly interact
with one another over long periods of time.

To address this gap the central research question in this pa-
per is: what is the optimal period of matching for a given service
arrival rates considering matching objectives such as average
utility attained, number of successful matches and fairness in the
distribution of utility? We use simulation studies on a synthetic
CBDM scenario to identify the optimal period of matching for
various arrival rate of designers and perform Sobol sensitivity
index [17] to study the robustness of the design period to the vari-
abilities in the seeker arrival rate and availability of providers.

This paper is structured as follows. Section 2 describes the
modeling of resource allocation in CBDM as a matching prob-
lem, Section 3 shows the results of simulation studies on a syn-
thetic CBDM scenario and identifies optimal matching period,
Section 4 studies the robustness of this optimal matching period
and Section 5 presents the concluding remarks.
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2 Modeling Resource Allocation in CBDM as a
Stochastic Matching Problem
We model CBDM as a resource allocation problem, where

service seekers (S) avail manufacturing resources from service
providers (P). The sets of service seekers, and service providers
are denoted by S = {s1.s2....,s|S|}, and P = {p1, p2...., p|P|} re-
spectively. Service seekers and providers will be collectively re-
ferred to as agents. The set of service seekers constitute the al-
ternative set of service providers and vice-versa. Together, they
form a bipartite set, and the resource allocation is formulated as
a bipartite matching problem.

The first step in matching involves quantification of pref-
erences of seekers and providers using the expected utility the-
ory [18]. The next step is to generate the preference rank or-
dering of alternatives for each participant based on the expected
utilities. The matching algorithm is then implemented to match
the service seekers to the most suited service providers. This is
called a single-period matching. These steps are elaborated fur-
ther in Section 2.1.

In a stochastic environment, where the service seekers and
providers arrive and exit the system as a continuous process over
a long period of time (T ) the matching mechanism needs to be
implemented multiple times. The mechanism is implemented re-
cursively after every fixed interval of time, tdesign. The recursive
implementation of the single-period matching after every fixed
interval of time is called multi-period matching. The interval
between two successive implementations of the matching mech-
anism is referred to as a matching cycle. During this period new
service seekers place their service requests, the service providers
complete their jobs assigned in previous cycle and become avail-
able. A suitable designed matching period tdesign optimizes the
outcome of the mechanism. Section 2.2 elaborates the modeling
and implementation of multi-period matching in CBDM.

2.1 Single-period matching
Following the work of Fernandez et al. [19] we use a utility-

based procedure to quantify the preference characteristics of the
agents. The first step is to identify all the attributes that the agents
consider while evaluating their alternatives. For example, all ser-
vice seekers value certain attributes of the service providers such
as the resolution of the machine they possess, the strength of
the material offered etc. Similarly, service providers consider
certain attributes such as printing time, size of the design while
evaluating their choice set of alternatives. All these attributes are
collectively referred to as X = {X1,X2, . . . ,Xn}.

Using standard utility assessment procedures [18] single at-
tribute utility function fki can be obtained for any service seeker
si towards attribute Xk. The single attribute utility functions
are combined to obtain multi-attribute utility function ui(X) =
u( f1i(X1), f2i(X2), . . . , fni(Xn)). ui(X) defines the preference
characteristics of service seeker si towards an alternative charac-

terized by attributes X . Assuming the additive form of the multi-
attribute utility function, we have ui(X) = ∑

n
k=1 wki fki(Xk) where

wki is the weight that si associates to attribute Xk. The attributes
that the service seeker do not care about are assigned a value of
zero.

fki is the utility that the service seeker si attains for a certain
value of the attribute Xk. In practice, Xk will not be a fixed value
but would be a probability distribution over a range of possible
values. For example, the service provider would offer a range
of resolution for its printed parts based on the type of machine
offered. pk j(Xk) denotes the probability density function (pdf)
offered by service provider s j over the range of possible values
of attribute Xk.

The pdf of attributes offered by service provider p j along
with the multi-attribute utility function of service seeker si is used
to calculate the expected utility that si attains after being matched
to its alternative p j. This is denoted by E[ui j(X)].

E[ui j(X)] =
n

∑
k=1

wki

∫
[ fki pk j]dx (1)

Repeating the same steps for service providers, we obtain the
expected utility service of provider p j after being matched to
service seeker si as

E[u ji(X)] =
n

∑
k=1

wk j

∫
[ fk j pki]dx. (2)

The utility attained by service seekers by being matched is
also a non-increasing function of waiting time. The difference
between the time period of each matching cycle (t) and mean

arrival rate (
1
λ

) can be used as a nominal value for the waiting
time of service seekers. The true utility that the agents gain after
being matched is affected by the waiting time. In our model, we
assume that the period of each matching cycle (t) is short enough
that the temporal variability in utility can be neglected.

Based on the utility obtained for each agent being matched
to their alternatives, the preference rank ordering of each agent
over all their alternatives is generated. The preference rank order-
ing so generated is used in the DA algorithm 1 to match designers
to manufacturers.

2.2 Multi-period Matching
The demand for service and availability of resources deter-

mine the market thickness in CBDM. Both arrivals of service re-
quests and processing of services are modeled as stochastic pro-
cesses. This section describes the modeling of these stochastic
processes.
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Set each si ∈ S as unassigned and each pi ∈ P as totally
unsubscribed

while (∃pi ∈ P who is undersubscribed) and (∃sk ∈ Rpi

not provisionally assigned to pi) do

1. si is first such sk in Rpi and si is provisionally assigned to p j
2. unassign si from p j and provisionally assign si to pi
3. for each successor pk on Rsi remove pk and si from each

other’s list

end
Algorithm 1: Single-period DA mechanism

2.2.1 Arrival of Service Seekers The stochastic ar-
rival of service seekers is modeled as a Poisson process with
mean arrival rate λ . We chose a Poisson process to model the
number of service seekers because (a) Poisson distribution mod-
els discrete events that occur in a finite and continuous interval of
time, and (b) service seekers arrive from a wide range of sources
independent of one another. The sources are designers or groups
of designers trying to get their parts printed or manufactured.
They are independent because the arrival time of a designer does
not depend on the arrival time of other designers in the system.
The set of service seekers on kth matching cycle is denoted as Sk.
The probability density function π(|Sk|) over number of service
seekers |Sk| is given by Equation 3.

π(|Sk|) =
e−λ λ |Sk|

|Sk|!
(3)

The mean arrival rate (λ ) is a characteristic of the target
population on which the mechanism will be implemented. The
higher the demand for cloud-based services higher the value of
(λ ). The mean arrival rate varies from one setting to the next.
The demand cannot be controlled by the mechanism designer.
The goal is to design the matching period (t) for a given demand
(or arrival rate λ ) of the target population.

2.2.2 Availability of Service Providers The set of
service providers who are available on the kth matching cycle
is denoted by Sk; we have Sk ⊆ S. The availability of service
provider p j in a matching period depends on the complexity of
the job assigned to them in the previous periods, the type of
manufacturing resource they possess, and their average work-
ing time in a day (h j). The complexity of service request (of
the service seeker si that he/she got matched to) and the type of
manufacturing resource (possessed by service provider p j) de-
termine the service time (τi j) needed for processing a request.
For example, a service provider with a machine that uses a Stere-
olithography (SLA) process can print a design faster than a ser-
vice provider possessing a machine that uses Fused Deposition

Modeling (FDM) printing process. We assume that each ser-
vice provider is available in a matching cycle if he/she completes
the previous service request in the preceding matching cycles.
τi j

h jt
is the number of matching cycles after which service seeker

p j is available after being matched to service seeker si. A ser-
vice provider who is able to meet the service requirements faster
is more available and therefore derives more utility during the
matching duration T by being available on a higher number of
matching cycles.

2.3 Matching Mechanism
Thekinen and Panchal [9] have shown that the Deferred Ac-

ceptance (DA) algorithm is the most suited matching mechanism
in a totally decentralized design and manufacturing setting due to
its properties such as stability, individual rationality, consistency,
immunity to gaming behavior of the participating agents, mono-
tonicity with respect to demand, and supply. Now, we extend
this matching mechanism into a multi-period setting and deter-
mine the optimal period of implementation of the mechanism (t).
The extension of the DA mechanism in a multi-period setting is
described in Algorithm 2.

Set availi = 1 ∀ pi ∈ P
for (time← t to T step t) do

if time is t then
Set each pi ∈ P as unassigned;

else
Unassign those pi ∈ P who have availi = 1;

end
while (∃pi ∈ P who is unassigned) and (∃sk ∈ Rpi

not provisionally assigned to pi) do
si is first such sk in Rpi and si is provisionally

assigned to p j;
unassign si from p j and provisionally assign si to

pi;
for each successor pk on Rsi remove pk and si

from each other’s list;
end
Set availi = 0 for all pi in P who is assigned a seeker
in this matching cycle;

Set availi = 1 for those pi who completed previous
assignment;

end
Algorithm 2: Multi-period DA mechanism
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3 Simulation Studies
We consider an illustrative scenario where 50 independent

3D-printer machine owners are offering manufacturing services.
Service seekers are designers from a population who are trying
to get their designs prototyped in the 3D printers. The service
providers and service seekers are referred to as manufacturers
and designers respectively. The arrival of designers is modeled as
a Poisson process. The manufacturer p j offer h j working hours
per day. Matching is done after every t days. We assume that
each manufacturer can be matched to at most one designer in a
matching cycle. This is not a limitation of the model but has been
assumed for analysis purposes.

3.1 Data Collection
The manufacturers’ attributes considered are machine vol-

ume, machine resolution (Res), the tensile strength (TS) of the
material offered, manufacturer proximity whereas designer at-
tributes were printing time, material requirement, and design di-
mensions (Vol). To generate the attributes of the designers, 100
different designs are downloaded from Thingiverse [20] and their
characteristics such as design dimensions, printing time required
in different 3D printers are recorded. Some of the sample designs
used are shown in Figure 1. Attributes of a large sample size
of designers are generated from these recorded attributes. Man-
ufacturer data concerning the machine attributes are collected
from the Senvol [21] database. The machine search mode on the
database is used for searching machine features. Material prop-
erties of the material used in these 3D printers are collected from
iMaterialise [22]. 50 unique material machine combinations are
used to define the attributes of 50 manufacturers.

FIGURE 1. Samples of designs used in the simulation studies

TABLE 1. Range of values used for the attributes in the simulation
studies

Attribute Area (in2) Vol (in3) Res (mm) TS (MPa)

min 3.4 4.5 0.01 14

max 279.3 67875.4 1 1800

FIGURE 2. Examples of some of the 3D printers used in the simula-
tion studies

3.2 Setting Parameters of the Simulation Studies
The arrival rate of designers is varied from 1 arrival per day

to 50 arrivals per day. The efficiency of the mechanism is as-
sessed over a duration of 30 days (T = 30). The mean printing
time of the selected designs on the selected machines for sim-
ulation studies is approximately 5.99 hours. The working time
(h) denoting the availability of the manufacturers on a day was
set to low (1.5 hours per day) and high setting (24 hours per
day). When h = 24 hours nearly all the manufacturers (includ-
ing the matched ones) are available in every cycle of matching
when period (t) is varied from 0.5 days to 10 days. However,
when h = 1.5 hours some of the matched manufacturers will not
be available on a few subsequent cycles after getting matched,
particularly when t < 4 days.

3.3 Results of Simulation Experiments
The following measures were used to compare the efficiency

at different matching period: a) total expected utility attained
by the set of manufacturers (denoted by EUP), b) total expected
utility attained by the set of designers (denoted by EUS), c) frac-
tion of successful matches, and d) variation in utility distribution
among service providers (denoted by σEUP ). Total expected util-
ity attained by the set of manufacturers is

EUP(tk) =
|Pk|

∑
j=1

E[u ji]1M−1 where,

{
1
M−1 = 1, M−1

p j
(tk) ∈ Sk

1
M−1 = 0, otherwise

(4)
The total expected utility attained by set of designers is

EUS(tk)=
|Sk|

∑
i=1

E[ui j]1M where,

{
1M = 1 Msi(tk) ∈ Pk

1M = 0 otherwise
(5)

The fraction of successful matches in kth matching cycle is given
by |Pk|
|P| . The degree of unfairness in a matching cycle with respect

to service providers is measured by the standard deviation of the
utility distribution among all the service providers participating
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in that cycle (|Pk|) is

σEUP(tk) =
|Pk|

∑
j=1

((
E[u ji]−

EUp(tk)
|Pk|

)2
1
M−1

)
(6)

All these measures are obtained by averaging over the entire
matching duration T as shown in Equation 7. In Equation 7,
O(ti) indicates the value of measure O at matching cycle ti and⌊T

t

⌋
is the number of matching cycles. Here, bc denotes floor

function. O is one of either EUP, EUS, σEUP , the fraction of
successful matches depending on the objective of the mechanism
we consider for efficiency.

O =
b T

t c
∑
i=1

O(ti) (7)

The results showing the effect of matching period on each
of the four objectives are discussed in the rest of this section.

FIGURE 3. Total Expected Utility attained by the set of service
providers as a function of matching period for various arrival rates

3.3.1 Service Provider Utility When the period of
matching cycle is increased, manufacturer (or service provider)
utility (EUP) gets affected due to two reasons: a) the sample size
of service seekers increases thereby increasing the number of al-
ternatives to choose from, b) the number of matching cycles de-
creases over a fixed duration T thereby decreasing the average
utility attained over an assessment duration T . Both of these
causes have opposing effects on the average manufacturer utility.

When the matching period t is increased from 0, at low val-
ues of t, the effects due to a low sample size of service seeker

alternative are more dominant considering the average utility at-
tained by all service providers. This is because most of them
remain unmatched in each matching cycle. Moreover, if the av-
erage service request processing time τ is lower, then the unfair-
ness in utility distribution is more prominent at small values of
matching period t. This is because the more sought-after man-
ufacturer will be matched in each cycle while the others remain
unmatched. If τ is high, then the less desirable manufacturers
get matched due to the lack of availability of the manufacturers
already matched in every matching cycle.

At large values of t, the marginal effect from an increased
sample size due to increased t is less prominent. Now, the effect
of a decreased number of matching cycles becomes more promi-
nent. Therefore, as t is varied from 0 to large numbers there
is an increase in service provider utility initially, followed by a
decrease. The point where the effect of marginal increase in pe-
riod on the service provider utility undergoes a transition from
increase to decrease, is the optimal matching period.

From simulation studies, we obtain that the optimal match-

ing period is tdesign =
|P|
λ

. This is the period at which service
providers attain the highest utility. This is not an exact point
as the optimum shifts mildly due to stochasticity in arrival pat-
terns, randomness in utility distribution, the working time of
service providers. But over a wide range of arrival rate λ ,
tdesign is the optimal matching period. The reason is that when
0 < t < tdesign there are not enough service seekers in the sys-
tem (in expectation) at the instance of matching to match all the
service providers. Thus, when t is increased from 0 to tdesign
the effect of an increased number of service seekers is more pro-
nounced than the effect of a decreased number of matching cy-
cles. However, when t > tdesign there is sufficient number of ser-
vice seekers to match all the service providers and only the qual-
ity of alternatives or number of matching outcomes to choose
from improves. As a result, the effects due to a decreased num-
ber of matching cycles start taking more precedence, thereby de-
creasing the overall utility. Also, the presence of a |P| number
of service seekers does not guarantee that all service providers
in P will get matched. This is because DA produces only sta-
ble matches and there may be no stable solution that gets all |P|
agents matched. In practice, the required number of service seek-
ers is slightly higher than |P| because of this restriction of stabil-
ity. This is why in the simulation studies the actual optimal point
is slightly higher than the design optimal point as seen in Fig-
ure 3. For example, when λ = 1 we have tdesign = 5 but the actual
optimum occurs at t = 6, and when λ = 2 we have tdesign = 2.5
when the actual optimum is at 3. Thurber [23] showed that the
number of stable matches under DA mechanism (denoted by |M|)
when λ t men and women are being matched is

|M|> 1.509λ t

1+
√

3
when |λ t| ≥ 1 (8)
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As a result, the actual optimum is not too far away from tdesign as
the number of stable matches grows in power of t.

3.3.2 Service Seeker Utility The average expected
utility per designer (or service seeker) decreases monotonically
as the period of matching increases. This is because of the in-
creased competition due to a higher number of designers using
the same set of available resources. The average utility is not a
good measure of matching efficiency as the total number of de-
signs getting printed is not accounted for in this metric. There-
fore, we use the total utility attained by all designers to quantify
efficiency (EUS).

FIGURE 4. Total Expected Utility attained by the set of service seek-
ers as a function of matching period for various arrival rates

Similar to service providers, there is an optimal period of
matching where the effect due to a marginal increase in the num-
ber of designers becomes less prominent than the effect due to a
decreased number of matching cycles. EUS increases from t = 0
to this optimal point and decreases thereafter. From the results
of simulation studies as shown in Figure 4, we conclude that the

matching period that maximizes designer utility is tdesign =
|P|
λ

.
The actual optimum is slightly lower than the design optimal
point. For example, when λ = 1 we have tdesign = 5 but the actual
optimum occurs at t = 4 and when λ = 2 we have tdesign = 2.5
when the actual optimum is at 2. This is because some of the
machines considered for the simulation studies were highly un-
desirable to prototype most of the designs and therefore there is
not much increase in overall utility being matched to them. This
is a very small fraction and the designed optimum is not too far
off from the actual optimum.

3.3.3 Fraction of Successful Matches From the
simulation studies, the actual optimum period of designer and

manufacturer was very close to the design period. In the case
of manufacturers, the actual optimum was slightly higher than
tdesign, whereas it was slightly lower than tdesign for designers.
The efficiency lost because of this difference is the price paid
for stability and randomness in the scenario such as variations in
machine capacity. However, this loss is very small and the de-
viation of actual optimum from tdesign is minor as seen from the
simulation results. The number of successful matches is another
important matching objective. In Figure 5 we show that the frac-
tion of successful matches as a function of matching period. The
steepest increase in the fraction of successful matches is seen
from 0 to tdesign as when t < tdesign there is not sufficient num-
ber of designers in the system to match all the manufacturers.
When t > tdesign only the number of stable matching outcomes
to choose from increases and the improvement in the fraction of
successful matches with an increased period is small. Thus at
t = tdesign =

|P|
λ

a ‘nearly’optimal fraction of successful matches
is achieved while optimizing the designer and manufacturer util-
ity.

FIGURE 5. Fraction of successful matches as a function of matching
period for various arrival rates

3.3.4 Fairness From the perspective of the mechanism
designer, the objective is not just to optimize for aggregate util-
ity attained by the participating agents, but to also account for
the fairness in the distribution of utility. When the period is
very small (t→ 0) the matching outcome is unfair to the service
providers. The most sought-after service provider keeps getting

matched repeatedly. This is particularly true when
h
τ

is large,
i.e., when availability (or working time h) is high compared to
the average service time (τ) as the most sought-after manufac-
turer is available in most of the matching cycles thereby gaining
an advantage over the rest. This causes the unfair region of out-
comes (or peak of the standard deviation of utility) to shift further
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away from design point (tdesign), as seen in Figure 6. A working
time of 24 hours per day for a mean printing time of 5.99 hours
was used to study the effect of period on fairness in Figure 6.

FIGURE 6. Standard deviation of Expected Utility attained by the set
of service providers as a function of matching period for various arrival
rates (when working time is h = 24)

The process was repeated for h = 1.5 hours per day and
the unfair region shifted to higher values of matching periods,
as shown in Figure 7. This is because of low working times,
the matched manufacturers are not available in the subsequent
matching cycles thereby allowing other manufacturers to get
matched as well increasing the fairness.

FIGURE 7. Standard deviation of Expected Utility attained by the set
of service providers as a function of matching period for various arrival
rates (when working time is h = 1.5hours)

4 Robustness of the Optimal Period
From the simulation studies, an optimal period (tdesign) was

proposed for a given arrival rate. Now, the arrival rate may not

remain constant over the entire matching duration T and is sub-
jected to variabilities. For example, depending on the day of
the week or time of the day, the arrival rate may differ from its
nominal value. The optimal period was designed for the nominal
value of arrival rate. It is important to measure the robustness
of the optimal solution to such variabilities. We use sensitivity
analysis to measure the robustness. Sensitivity analysis is an im-
portant tool in the validation and measure of robustness of the
model [24]. Section 4.1 presents the framework used to perform
sensitivity analysis and Section 4.2 discusses the results obtained
from the analysis.

4.1 Framework for Sensitivity Analysis

Deferred Acceptance mechanism always picks the same set
of stable matched pairs for an input set of agents and preference
lists. The matching mechanism is a deterministic model [25] and
uncertainty in output is only due to uncertainty in model param-
eters.

The inputs to the mechanism are preference distribution of
both agents, availability of service providers (working time),
number of service providers, and arrival rate of service seek-
ers. Based on the input, the optimal matching period parame-
ter (tdesign) of the mechanism is designed. This depends only on
the arrival rate. We study the robustness of various objectives
to variabilities in arrival rate (λ ) and matching period (t). The
robustness of the following four objectives (O) are studied: a)
utility attained by service providers, b) utility attained by seek-
ers, c) fraction of successful matches, and d) fairness of matched
outcome. These objectives were described in Section 3.3.

There are various metrics to quantify sensitivity; some of
the examples are differential sensitivity [26], partial rank corre-
lation coefficients [27], frequency domain approach [28]. How-
ever, we use Sobol sensitivity index [17] as our model is com-
putationally inexpensive and this approach measures both linear
and non-linear effects. Global sensitivity of input Xi on the ob-
jective O considering only linear effects is denoted by Li and is
given by Equation 9. Global sensitivity of input Xi on objective
O considering both linear and non-linear effects due to interac-
tion with other input variables is denoted by Ti and is given by
Equation 10. Results of the sensitivity analysis are presented in
Section 4.2.

Li =
VarXi(EX∼i(O|Xi))

VarO
(9)

Ti =
EX∼i(VarXi(Y |X∼i))

VarO
(10)
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4.2 Results of Sensitivity Analysis
The global sensitivity results for various objective functions

are shown in Table 2. These results were verified using conver-
gence studies. Convergence study for one of the matching objec-
tives is shown in Figure 8. From Table 2 we observe that con-
sidering utility attained by seekers and providers as the match-
ing objective, global sensitivity towards variability in arrival rate
was much lower than sensitivity towards variability in the pe-
riod. Thus the design point is robust towards variability in ar-
rival rate when utility attained by the participating agents is the
matching objective. While considering the sensitivity of fraction
of successful matches and fairness in the distribution of utility
both arrival rate and period have equal contribution. This is be-
cause these objectives are equally affected by variabilities in both
the inputs. For example, increasing either the arrival rate or the
matching period from 0 to very high values increases the fraction
of successful matches monotonically from 0 to 1 as both results
in an increased number of designer choice to choose from in the
bipartite matching.

TABLE 2. Linear and total global sensitivity of various matching ob-
jective towards its inputs

aaaaaaaaa
Objective

Variable Arrival Rate (λ ) Period of cycle (t)

Linear Total Linear Total

Utility of P (EUP) 0.176 0.454 0.571 0.849

Utility of S (EUS) 0.020 0.322 0.703 1.005

fraction of matches 0.320 0.687 0.338 0.705

σEUP when h = 24 0.300 0.686 0.339 0.725

σEUP when h = 1.5 0.004 0.100 0.925 1.021

FIGURE 8. Convergence study for sensitivity. Sensitivity of total util-
ity of service providers is plotted.

In Table 3 we compare the local sensitivity of various match-
ing objectives towards arrival rate to the global sensitivity. Lo-
cal sensitivity when λ ∈ [100,200] is much lower than global
sensitivity. This is because for the range of matching period
(0.5 ≤ t ≤ 10) considered, increasing the arrival rate from 100
to 200 only increases the quality of matches and not the number
of successful matches. Thus most of the contribution to global
sensitivity comes in the range λ ∈ [0,50] and that is also evident
from the local sensitivity values in this range being higher than
the global sensitivity for all the matching objectives considered.

TABLE 3. Local sensitivity of matching objectives towards arrival
rate λ

aaaaaaaaa
Objective

Range
Global [0,50] [100,200]

Utility of P (EUP) 0.454 0.645 0.046

Utility of S (EUS) 0.322 0.514 0.040

fraction of matches 0.687 0.466 0.287

σEUP when h = 24 0.686 0.752 0.207

σEUP when h = 1.5 0.100 0.219 0.035

5 Conclusion
From the simulation studies, we propose that in a multi-

period matching with seekers arriving from the population of a
wide range of independent sources and a fixed number of inde-
pendent providers offering manufacturing resource, the optimal
matching mechanism is Deferred Acceptance mechanism with
providers as proposers implemented at an interval of tdesign =
|P|
λ

. This is because when t < tdesign the effect of an increased
number of service seekers is more pronounced than the effect
of decreased number of matching cycles, but after t > tdesign the
increased number of service seekers only increases the quality
of alternatives to choose from and does not influence the num-
ber of successful matches. Optimality is considering the number
of successful matches, utility attained by both service seekers
and service providers as the criteria. When the matching ob-
jective is the number of successful matches then tdesign gives an
approximately optimal solution. This is because |P| = λ tdesign
does not guarantee everyone to be matched as there may be no
such stable solution. This loss in efficiency is the price paid for
stability. Similarly, the actual optimal point provider utility is at
a period slightly higher than tdesign and for seeker utility is at a

9 Copyright c© 2018 by ASME



period slightly lower than tdesign. This happens due to lack of sta-
ble solutions that can match all the service providers. However,
this difference is not significant as the number of stable solution
grows as a power of matching period. Therefore, for design pur-
poses tdesign is the optimal period of matching that maximizes
the matching objectives. The minor loss in efficiency is the price
paid for stability. The designed period works well even from fair-

ness standpoint when
τ

h
is small compared to tdesign. A low ratio

τ

h
corresponds to a situation of high service rate as the providers

are offering relatively higher number of working hours (h) for the
same mean service processing time (τ).

Using sensitivity studies, the designed matching period was
also found to be robust towards variabilities in arrival rate. Such
a matching mechanism satisfies useful properties such as stabil-
ity, consistency, immunity to strategic behavior, individual ra-
tionality, resource monotonicity, population monotonicity and at
the same time optimize the matching objectives. An assump-
tion made in these studies is that the temporal variation in util-
ity is negligible. This is valid in CBDM applications where the
matching period is small enough. However, in other applications
such as kidney exchange, this cannot be neglected. When utility
varies with waiting time, properties such as individual rational-
ity, stability, consistency will be affected by matching period.
For example, if prolonged for a long duration the matched out-
come will not be individually rational as the agent would rather
remain unmatched. In future studies, this assumption can be re-
laxed to study the interplay between satisfaction of properties of
mechanism and efficiency.
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