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Abstract Dynamic analysis of thin rectangular elastically

supported plates to transient loads is presented. A floating

airport is modeled as a horizontal Kirchhoff’s plate, which

is elastically supported at the ends, and is subjected to the

impact of aircrafts landing and deceleration over its length.

This sets the free–free–free–free plate into high-frequency

vibration, causing flexural stress waves to travel over the

plate. First, the beam natural frequencies and modeshapes

in either direction are generated with these complexities.

The eigenvalue analysis of the governing differential

equation is done, using the weighted summation of the

product of the beam modes. The radiation pressure on the

bottom side of the plate is included to reduce the fre-

quencies by the added-mass effect. The plate is then sub-

jected to decelerating shock loads. The vibratory response

is analyzed by the computationally efficient normal mode

analysis. The amplification factor versus the taxiing time of

the moving load is generated. This gives insights into the

maximum stress encountered under the transient load, as

function of taxiing time and support.

Keywords Plate vibration � Free edge � Shock loads �
Normal mode analysis � Added mass

List of symbols

L Length of the plate

B Width of the plate

h Thickness of the plate

q Density of the beam material

qwater Density of water

qmaterial Density of plate material

E Elastic modulus of the material

I Second moment of area of the cross section

of the beam about the horizontal neutral axis

x Space variable along x-direction

y Space variable along y-direction

t Time variable

/j(x) jth beam modeshape in the x-direction

/l(y) lth beam modeshape in the y-direction

Uk(x, y) kth plate modeshape

qj(t) Principal coordinate

W(x, y, z, t) Velocity potential of the fluid

Wk kth velocity potential of the fluid

Wk
* kth velocity potential of the fluid per unit

velocity of the kth principal coordinate

Akn kth generalized added mass under the nth

plate modeshapes

F(x, y, t) Transient load

xn1 Fundamental natural frequency of the plate

Tn1 Fundamental natural period of the plate

z(x, y, t) Dynamic flexural deflection of the plate

zst(x, y, t) Static flexural deflection of the plate

1 Introduction

The increasing world population has been congesting

inhabitable land for the last few decades. Smaller and

island countries (e.g., Japan) have been foraying into

floating cities and airports, and thus, the design of such

VLFS (very large floating structure) has been gaining rel-

evance. Floating airports are subject to impact and transient
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loads of the taxiing aircraft. The transient force sets the

plate in vibrations, exciting all its natural frequencies to

various amplitudes. This causes dynamic deflections and

stresses in the VLFS, which must be analyzed to ensure a

sound structural design.

Robinson and Palmer [1] theoretically formulated the

frequency parameter of a Free–Free–Free–Free (FFFF)

plate in contact with water on one side, stopping short of

calculating the frequencies and modeshapes. Kagemoto

et al. [2] calculated the wave-response of a VLFS using

substructure models using FEA, and experimentally. This

work did not take any shock loads into account. It studied

only one case of plate size and configuration, but could not

generalize the frequencies, modeshapes, added masses, and

dynamic loading factors. Endo [3] used FEA to study the

VLFS response due to aircraft landing/takeoff. Seto et al.

[4] studied the two-way coupled Mega-Float vibratory

response due to wave action. Hashemi et al. [5] studied the

free vibration of elastically supported plates with water on

one side, using the Ritz method.

None of the above literature studied the impact-induced

vibration of elastically supported plates, in contact with

water on one side, due to aircraft landing, using a semi-

analytical approach. In this work, a floating airport is

modeled as a rectangular plate with water on one side,

supported on the edges by elastic supports. The sea is

assumed to be calm. The structure is assumed to be very

lightly damped. First, the free (dry) vibration analysis of

the plate is done using the Galerkin’s method, generating

the dry natural frequencies and modeshapes. The radiation

pressure has been included with the source distribution

technique, leading to added masses associated with each

modeshape and the corresponding reduced (wet) natural

frequencies. This is followed by a forced vibration analysis

of the plate, due to the impact of the landing aircraft, which

decelerates to zero velocity. The dynamic analysis is done

with the normal mode summation method. The corre-

sponding static analysis is done by the Galerkin’s method.

The global maximum dynamic deflection is normalized by

the global maximum static deflection to generate the

dynamic loading factor (DLF) for various taxiing time and

decelerations. Impact and transient loads cause the partic-

ipation of the higher-order modes. Optimized taxiing

duration and decelerations has been recommended, which

leads to the minimum dynamic deflections and stresses.

2 Problem formulation

The floating airport is modeled as a horizontal Kirchhoff’s

plate (Fig. 1; Table 1), of length L, width B, thickness h,

flexural rigidity D, floating over water of density qwater, and
supported over its edges by vertical elastic supports of

spring constant k. The radiation damping is assumed to be

zero, i.e., radiation pressure is almost nearly in phase with

the vertical acceleration of the body. The transient force

(Table 2) is modeled as a Heaviside step function with an

initial velocity 0u0 m=s along L, and decelerated to zero

velocity, over a taxiing distance 0S0 ¼ ut � 1
2
at2tax; and for a

taxiing duration of ttax: The deceleration 0a0 ¼ u2

2S
m=s2.

3 Analysis methodology

The cross-sectional view of the floating airport, at y = B/2,

is shown in Fig. 2. The aircraft lands at position A, with an

initial horizontal velocity 0u0 m=s, and decelerates to rest at

position B. The vertical velocity of the craft is assumed to

be nearly zero, and there is no vertical impact on the plate

due to the landing. The plate vibration modeshape Uk x; yð Þ
is assumed to be a weighted superposition of the product of

the beam modeshapes /j xð Þ and /l yð Þ in either direction.

The beam modeshapes with elastically restrained edges

need to be first established, which will later act as admis-

sible functions into the plate vibration analysis.

Fig. 1 Elastically supported plate

Table 1 Plate parameters

Plate Symbol Unit

Length L m

Breadth B m

Thickness h m

Flexural rigidity D Nm

Density of water qwater kg/m3

Edge spring constant k N/m

Table 2 Taxiing parameters

Aircraft landing Symbol Unit

Initial velocity of the aircraft u m/s

Final velocity of the aircraft 0 m/s

Taxiing time ttax s

Taxiing distance S m

Deceleration a m/s2

Transient force F N
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The governing differential equation (GDE) of free

vibration of an elastically supported beam is given as

follows:

m
o2zðx; tÞ

ot2
þ EI

o4zðx; tÞ
ox4

¼ 0 ð1Þ

Equation (1) is subject to the boundary conditions:

z00 0ð Þ ¼ z00 Lð Þ ¼ 0;EIz000 0ð Þ ¼ �kz 0ð Þ;EIz000 Lð Þ ¼ �kz Lð Þ;
ð2a�dÞ

i.e., the end bending moment is zero, while the shear force

at the ends balances the spring force due to the end

deflection. In Eq. (2(a–d)), as k ? 0, it behaves like a

Free–Free (FF) beam; while as k ? ?, it behaves as a

simply supported (SS) beam. The dynamic deflection is

expressed as z x; tð Þ ¼ G xð ÞF tð Þ: Using the method of

separation of variables, the spatial component is GIV xð Þ ¼
mx2

EI
G xð Þ ) GIV xð Þ ¼ b4G xð Þ; whose general solution is

G xð Þ ¼ G1cosbxþ G2sinbxþ G3coshbxþ G4sinhbx:

ð3Þ

The constants G1;G2;G3;G4 in Eq. (3) are calculated

from the boundary conditions (Eq. 2(a–d)):

�G1 þ G3 ¼ 0;�G1cosbL� G2sinbLþ G3coshbL
þ G4sinhbL

¼ 0;
k

EI
G1 þ b3G2 þ

k

EI
G3 � b3G4 ¼ 0;

k

EI
cosbL� b3sinbL

� �
G1 þ

k

EI
sinbLþ b3cosbL

� �
G2

þ k

EI
coshbL� b3sinhbL

� �
G3

þ k

EI
sinhbL� b3coshbL

� �
G4

¼ 0:

ð4a�dÞ

Writing the above system of Eq. (4(a–d)) in the matrix

form and equating the determinant to zero (non-trivial

solution) generate the frequency equation, which is a

transcendental equation, satisfied by an infinite number of

unique values bL, each corresponding to a natural

frequency. The eigenvectors of Eq. (4(a–d)) generate the

constants G1;G2;G3;G4, and thus /j(x).

3.1 Dry free vibration of the plate

The GDE of free vibration of an elastically supported

Kirchhoff’s plate is expressed as follows:

m
o2zðx; y; tÞ

ot2
þ D

o4zðx; y; tÞ
ox4

þ o4zðx; y; tÞ
ox2oy2

þ o4zðx; y; tÞ
oy4

� �

¼ 0:

ð5Þ

The bending moments Mx and My are zero at the ends,

and the shear force at the edges equals the spring force

produced due to the edge deflection. As k ? 0, the plate

behaves like a FFFF plate, while as k ? ?, it behaves as a

simply supported (SSSS) plate. The total out-of-plane

dynamic deflection in Eq. (5) is z(x, y, t). Separating the

variables of Eq. (5), we assume Uk(x, y) as the kth spatial

shape function, and qk(t) as the temporal function of the kth

vibratory mode. The dynamic deflection of the plate is

approximately

z x; y; tð Þ ¼
X1
k¼1

Uk x; yð ÞqkðtÞ ð6Þ

with the 3-D plate modeshape in Eq. (6) defined as

Uk x; yð Þ ¼
Xmodex

j¼1

Xmodey

l¼1

Ak
jl/j xð Þ/l yð Þ

¼
Xmodex

j¼1

Xmodey

l¼1

Ak
jlGjl; i:e:;Gjl x; yð Þ ¼ /j xð Þ/l yð Þ

ð7Þ

mode x is the number of modes considered in the x-di-

rection, mode y is the number of modes considered in the y-

direction, and /j(x) and /l(y), are the respective 2-D beam

modeshapes (orthogonal set of functions). Ak
jl is the

amplitude of each Gij x; yð Þ for the kth natural frequency of

vibration (Eq. 7). The natural frequency xn is non-di-

mensionalized by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D
qmaterialhL

2B2

q
:

3.2 Plate vibration with water on one side

The 3-D boundary value problem of wet vibration of plates,

with water on one side, is framed as shown in Fig. 3. The

flexible plate has a semi-infinite fluid domain on one side,

the other side being dry. Sides DA and BC are formed by

the high-frequency limit of the combined free surface

A B
Calm water

k                                                                       k

Fig. 2 Elastically supported beam
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boundary condition (Dirichlet condition). AB represents

the plate. Assuming inviscid, incompressible, irrotational

flow, the velocity potential satisfies the Laplace equation,

i.e., r2w x; y; z; tð Þ ¼ 0, subject to the boundary conditions:

(a) the velocity potential on DA and BC are zero (high-

frequency limit of free surface water wave), i.e.,

w(x, y, 0, t) = 0

(b) the normal fluid velocity on AB equals the structural

velocity, i.e.,
owðx;y;0;tÞ

on
¼ oZðx;y;tÞ

ot

(c) fluid velocity tends to zero at the far-field, i.e.,

rw ? 0.

The governing differential equation for the free wet

vibration of a Kirchhoff’s plate, using Eq. (6), is

X1
k¼1

mUkðx;yÞ
d2qkðtÞ
dt2

þ
X1
k¼1

Dr4Uk x;yð ÞqkðtÞ

¼qwater
X1
k¼1

W�
kðx;y;0Þ

d2qkðtÞ
dt2

)
X1
k¼1

mþqwater

Z
S

2Uk n;gð ÞGPQdSQ

8<
:

9=
;

2
4

3
5Ukðx;yÞ

d2qkðtÞ
dt2

þ
X1
k¼1

Dr4Uk x;yð ÞqkðtÞ

¼0

ð8Þ

In Eq. (8), Wk
* is the kth radiation velocity potential per

unit velocity of the principal coordinate
dqkðtÞ
dt

. It can be

related to the 3-D Green’s function GPQ, where P is the

field point and Q is the source point. The body-boundary

condition of no-penetration relates it to the plate mode-

shape. The details are found in Datta [6], and Datta and

Troesch [8]. Pre-multiplying Eq. (8) by the rth plate

modeshape Ur(x,y) and integrating over the surface area of

the plate gives the generalized mass, generalized added

mass, and generalized stiffness.

X1
k¼1

ZL

0

ZB

0

Uk x; yð ÞmUn x; yð Þdxdy

2
4

3
5 d2qk tð Þ

dt2

þ
X1
k¼1

ZL

0

ZB

0

Uk x; yð ÞqwaterW�
k x; y; 0ð Þdxdy

2
4

3
5 d2qk tð Þ

dt2

þ
X1
k¼1

ZL

0

ZB

0

Uk x; yð ÞDr4Un x; yð Þdxdy

2
4

3
5qk tð Þ

¼ 0 )
Xk
n¼1

Mkn þ Aknð Þ€qn tð Þ þ
Xk
n¼1

Kknqn tð Þ ¼ 0

ð9Þ

with generalized added mass is given as

Akn ¼
ZL

0

ZB

0

Uk x; yð ÞqwaterW�
k x; y; 0ð Þdxdy: ð10Þ

The non-dimensional added virtual mass increment

(NAVMI) factor depends only on the modeshape. It is

given as

NAVMI ¼
R L

0

R B

0
Uk x; yð ÞW�

k x; yð ÞdxdyR L

0

R B

0
Uk x; yð ÞUn x; yð Þdxdy

: ð11Þ

3.3 Plate vibration under transient force

The governing differential equation for forced vibration of

an elastically supported plate under a moving point load is

given as

m
o2zðx; y; tÞ

ot2
þ D

o4zðx; y; tÞ
ox4

þ o4zðx; y; tÞ
ox2oy2

þ o4zðx; y; tÞ
oy4

� �

¼ Fd x� ut þ 1

2
at2

� �
:

ð12Þ

Equation (12) is solved by the normal mode summation

method. Substitution of Eq. (6) above, and integration with

weighting functions over the space, gives the normal mode

expansion of the governing differential equation as a

function of time only, as

X1
n¼1

Mkn€qnðtÞ þ
X1
n¼1

Kkmqn tð Þ ¼ gfk tð Þ

) M½ � €q tð Þf g þ K½ � q tð Þf g
¼ gf tð Þf g;

ð13Þ

where Generalized mass � Mkn ¼
RL
0

RB
0

Uk x; yð ÞmUn x; yð Þ

dxdy; Generalized stiffness � Kkn ¼
RL
0

RB
0

Uk x; yð Þ Dr4Un

2 ( , , , ) = 0 → 0

( , , 0, )
=

( , , )

( , , 0, ) = 0 ( , , 0, ) = 0

D A B C

Fig. 3 Boundary value problem

Mar Syst Ocean Technol (2017) 12:252–261 255

123



x; yð Þdxdy, Generalized forcing � gfk ¼
R L

0

R B

0
Uk x; yð Þ

F x; y; tð Þdxdy. Equation (13) is solved numerically in

MATLAB by the stable Euler’s implicit–explicit scheme,

to calculate the principal coordinates qk(t), which are then

multiplied by the corresponding plate modeshapes Uk(x,y)

to generate the dynamic deflection z(x,y,t). The static

deflection of the plate, at each time step, under the same

loading configuration, is calculated as a function of space

and time. The ratio of the dynamic deflection to the cor-

responding static deflection, under the equivalent loading

conditions, is defined as the dynamic load factor (DLF),

i.e.,

DLF � max
zðx; y; tÞ

max zst x; y; tð Þð Þ

� �
: ð14Þ

The static deflection is calculated by solving the fol-

lowing equation using Galerkin’s method which includes

the contribution of all the plate modeshapes. The classic

static plate bending equation and the static deflection are

D
o4zðx; y; tÞ

ox4
þ o4zðx; y; tÞ

ox2oy2
þ o4zðx; y; tÞ

oy4

� �

¼ F x; y; tð Þ; zst x; y; tð Þ ¼
Xmodex

j¼1

Xmodey

l¼1

HjlGjl: ð15ða; bÞÞ

Here, Hjl is the amplitude of the Galerkin’s pre-multi-

plier Gjl(x,y); and thus, it is the static counterpart of Ak
jl:

The DLF varies as a function of the taxiing time, which has

been non-dimensionalized as Non-D taxiing time ¼ ttaxxn1

2p :

Thus the DLF forms a very important design parameter for

the structural designer, who does the static analysis of the

corresponding area load only.

4 Results

4.1 Dry free vibration of the plate

The beam modeshapes are established for various end

supports, which are used as admissible functions in the

plate vibration analysis. The rigid body modes of heave,

pitch, and roll become more prominent with decreasing 0k0,
and need to be included in the eigenvalue analysis. For the

FF beam, the heave and pitch modeshapes are,

respectively,

/H xð Þ ¼ 1;/P xð Þ ¼ 1� 2x

L
; ð17ða; bÞÞ

When k ? 0, /H(x), /P(x) are present, and when

k ? ?, they are absent. For all intermediate values of 0k0,
their prominence is inversely proportional to k. Suppose the

above modeshapes are

/H xð Þ ¼ exp � kL3

EI

� �
;/P xð Þ ¼ 1� 2x

L

� �
exp � kL3

EI

� �
:

ð18Þ

Now exp �k½ � ¼ 1� k þ k2

2! � k3

3! þ � � � is a bounded

function. Thus, exp � kL3

EI

h i
is as a suitable coefficient for

/H(x), /P(x).

Table 3 shows the first four frequency parameters bL of

elastically supported beams, for a range of support factors
kL3

EI
. For kL3

EI
\10�3, the bL values approach those of a FF

beam, i.e., 4.73, 7.85. For kL3

EI
[ 106, they approach those

of a SS beam, i.e., np. As seen in Fig. 4, the sharpest

change in the fundamental bL occurs for 103\ kL3

EI
\108,

which indicates the transition zone between the FF beam

and the SS beam behaviors. However, for higher-order

modes, this change occurs at the larger kL3

EI
(Fig. 5). This has

been explained by the authors in their previous work Datta

and Thekinen 9]. The feasible eigenvector (among four)

must be chosen to generate the correct modeshapes, which

are listed in Table 4.

The fundamental modeshapes of elastically supported

beams, for different kL3

EI
, are shown in Fig. 6. It may be

observed that for small support factors (kL
3

EI
? 0), the fun-

damental mode tends to that of pure heave (zero curvature).

On increasing kL3

EI
, the curvature of the modeshape increases

and finally stabilizes to the first mode of a SS beam. The

pitch mode of a FF beam (zero curvature) transforms to the

second mode of a SS beam (Fig. 7). The third mode of the

FF beam transforms into the third mode of the SS beam

(Fig. 8).

Table 3 bL of elastically supported beam

kL3

EI
bL1 bL2 bL3 bL4

0.00001 0.0669 0.0882 4.7300 7.8532

0.0001 0.1189 0.1565 4.7300 7.8532

0.001 0.2115 0.2783 4.7301 7.8532

0.01 0.3762 0.4949 4.7302 7.8532

0.1 0.6685 0.8801 4.7319 7.8536

1 1.1843 1.5642 4.7489 7.8573

10 2.0323 2.7666 4.9134 7.8947

100 2.8768 4.6638 6.0762 8.2754

1000 3.1111 6.0371 8.5656 10.6109

10,000 3.1385 6.2584 9.3399 12.3587

100,000 3.1413 6.2807 9.4164 12.5464

1,000,000 3.1416 6.2829 9.4239 12.5644

10,000,000 3.1416 6.2832 9.4247 12.5662
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The beam modeshapes are used as admissible functions

in the plate vibration. Galerkin’s method is used to solve

the eigenvalue problem, generating the eigenvalue (xk) and

the eigenvectors Ak
jl

� �
. The middle-term of the biharmonic

operator r4U(x,y), in the stiffness term causes the coupling

between the beam modeshapes in the two perpendicular

directions. It is only for the SSSS plate, that this bihar-

monic operator middle-term does not couple the beam

modeshapes on either side, since the beam modeshapes and

their curvatures are orthogonal to each other, and they drop

out in the normal mode summation procedure.

Table 5 shows the first 3 9 3 = 9 natural frequencies of

elastically supported square plates, for four different end

support factors. The unique frequencies are in bold, while

the repeated frequencies are in italics. For kL3

EI
[ 106, the

frequencies correspond to those of a SSSS plate, which has

unique and repeated frequencies (identical twins). For
kL3

EI
\10�3, they correspond to those of a FFFF plate,

having unique, repeated, non-repeated frequencies (frater-

nal twins). This has been shown in Datta and Verma [7].

Figure 9 shows the first 7 9 7 = 49 modeshapes of a

square plate, with an elastic support factor of 0.0001 and

1,000,000, respectively. The diagonal modeshapes corre-

spond to the unique frequencies for mode index = 1, 4, 9,

16, 25, 36, 49. The first row/column stands for the heave

interaction from one side with all other modes from the

other side. The second row/column stands for the pitch

interaction from one side with all other modes from the

other side. The modeshape at positions (1,1), (1,2), and

(2,1) are the pure rigid body modes. The modeshapes

adjacent to the main diagonal are mirror images of each

other, corresponding to the Identical twins. However, the

alternate side-diagonal modes are very different from each

other, though they have very close frequencies (Fraternal

twins). Reducing the elastic support increases the promi-

nence of the non-repeated frequency pairs.

Inclusion of the fluid inertia reduces the natural fre-

quencies (Table 6a), making it more susceptible to tran-

sient impact loads. It is seen that the diagonal term Akk is

(much) larger than the non-diagonal terms Akn. The

NAVMI factor is directly proportional to the net volume

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

log(support factor)

fre
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en
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r
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Fig. 4 Fundamental bL versus log10
kL3

EI

h i
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Fig. 5 First 8 frequency

parameters bL versus log10
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h i
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enclosed by the modeshape. It also depends on the

boundary conditions and the aspect ratio of the plate. The

added mass associated with the fundamental modeshape is

the highest, and it decreases with the higher-order mode-

shapes. This is because the volume enclosed under the 3-D

plate modeshape decreases with higher modes. Also, the

boundary conditions seem to have a less and less influence

on the NAVMI magnitude with increasing modeshape

index.

Since the mass matrix is diagonal and the added mass

matrix is almost diagonal, the kth wet natural frequency is

given as

xk;wet ¼ xk;dry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ Akk=Mkk

s
;Mkk ¼

ZL

0

ZB

0

UkmUkdxdy;Akk

¼
ZL

0

ZB

0

UkqwaterW
�dxdy

ð19Þ

5 Forced vibration

With the availability of the free vibration frequencies and

modeshapes, the analysis proceeds to the forced vibration

of the elastically supported floating plate, subject to the

moving point load. Four different edge support factors have

been used, i.e., kL3

EI
¼ 0:0001; 10; 100; 106: The flexural

response has been studied for a wide range of non-D

taxiing time, from 0.1 to 5. The normal mode summation

method fails to decouple flexural degrees of freedom (ex-

cept of SSSS plate), causing the necessity of matrix

inversion in the time-integration of the coupled system of

modal governing differential equations. Figure 10 shows

the transient aircraft load, as a function of time, modeled as

a point load moving across the plate in the x-direction, with

the y-coordinate constant. The displacement has a para-

bolic relation with the taxiing time, as can be seen from the

top view of the above diagram, with the locus of the air-

craft following the white dotted line. The initial velocity of

the craft is assumed to be 60 m/s, the taxiing distance is

90% of the length L, and the final velocity is zero, and

hence the deceleration is computed as 2.25 m/s2.

Figure 11 shows the DLF for a square plate, elastically

supported with support factors of 1,000,000 (SSSS plate),

100, 10, and 1/10,000 (FFFF plate). Since small flexural

amplitudes are assumed in the Kirchhoff’s plate vibration,

Table 4 Eigenvectors of the frequency equation

kL3

EI
1,000,000 G1 G2 G3 G4

Mode 1 0 1 0 0

Mode 2 0 1 0 0

Mode 3 0 1 0 0

Support 100 G1 G2 G3 G4

Mode 1 0.1300 0.9761 0.1300 -0.1161

Mode 2 -0.5034 -0.4795 -0.5034 0.5130

Mode 3 -0.5752 0.06 -0.5752 0.5745

Support 10 G1 G2 G3 G4

Mode 1 0.4387 0.7082 0.4387 -0.3371

Mode 2 0.5486 -0.1041 0.5486 -0.6222

Mode 3 -0.5243 0.4282 -0.5243 0.5166

Support 0.0001 G1 G2 G3 G4

Mode 1 -0.7056 -0.0624 -0.7056 0.0216

Mode 2 0.0552 -0.7035 0.0552 -0.7064

Mode 3 -0.5044 0.4956 -0.5044 0.4956

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

non Dimensional space axis

fu
nd

am
en

ta
l m

od
e 

tra
ns

fo
rm

at
io

n sf = 1.1

sf = 1.79

sf = 2.2

sf = 2.48

sf = 2.71

sf = 3.81

sf = 4.65

sf = 6.11

sf = 11.22

increasing 
support factor (sf)

Fig. 6 Fundamental modeshapes of beam vibration with elastically supported ends, with various end supports
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the stresses are linearly proportional to the deflection.

When the added mass is included in the forced vibration

GDE, and the taxiing time is non-dimensionalized by the

first wet flexural period of the plate, the wet DLF charac-

teristics replicate the dry DLF [6]. The three distinct zones

of the dynamic response are demarcated as follows:

• Quasi-static zone (non-D taxiing time [5) At larger

taxiing time, the maximum dynamic deflection is only

5–10% greater than the maximum static deflection.

Thus, the dynamic stresses developed due to the

decelerating aircraft load, is 5–10% greater than that

predicted through the static analysis.

• Dynamic zone (0.3\ non-D taxiing time\ 3) At

shorter taxiing time, the dynamic stress overshoots to

30–60% above the static stress. A non-D taxiing time

&0.8, the DLF is &1.5 for a large range of support

factors, even if the plate approaches FFFF.

• Impulse zone (non-D taxiing time\0.3) At very small

taxiing time, the load moves across so fast that the

structure does not get the time to respond, while the
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Table 5 First 3 9 3=9 non-D

dry natural frequencies of a

square plate with four different

elastic support factors

k 1E ? 06 Type 100 Type 10 Type 1E - 04 Type

1 19.739 Unique 26.341 Unique 33.854 Unique 35.298 Unique

2 49.348 identical 67.678 identical 72.175 identical 72.535 identical

3 49.348 identical 67.678 identical 72.175 identical 72.535 identical

4 78.957 Unique 103.00 Unique 104.90 Unique 105.22 Unique

5 98.696 identical 128.86 fraternal 130.07 fraternal 129.66 fraternal

6 98.696 identical 128.87 fraternal 133.53 fraternal 133.74 fraternal

7 128.30 identical 160.11 identical 160.57 identical 160.67 identical

8 128.30 identical 160.11 identical 160.57 identical 160.67 identical

9 177.65 Unique 211.78 Unique 211.35 Unique 211.32 Unique
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static analysis overpredicts the deflection due to a

moving impulse function (Dirac Delta).

Since the change in the behavior from FFFF to SSSS

plate is seen between support factors of 10 and 100, the

nature of the DLF characteristics also changes between

these two magnitudes of the support. The DLF of the SSSS

plate may be verified from Datta [6]. As seen in Fig. 11,

the DLF for support factor = 1,000,000 (SSSS) and 100

has somewhat similar trends. The peak DLF decreases with
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Fig. 9 First 7 9 7 = 49 modeshapes of a square plate with elastic support factor kL3

EI
= 1/10,000, 1,000,000

Table 6 First 3 9 3 = 9 (a) non-D wet natural frequencies and (b)

NAVMI factors of a square plate with four different kL3

EI

kL3

EI
1E ? 06 100 10 1E - 04

(a)

1 7.8282 12.039 24.480 26.017

2 26.829 45.074 54.289 55.030

3 26.829 45.074 54.289 55.030

4 47.795 76.596 81.142 81.671

5 59.688 93.722 102.50 102.85

6 62.070 93.962 102.63 103.16

7 84.358 124.61 127.28 127.56

8 84.358 124.61 127.28 127.56

9 122.98 169.88 170.52 170.58

(b)

1 0.4104 0.2902 0.0696 0.0642

2 0.1825 0.0961 0.0576 0.0551

3 0.1825 0.0961 0.0576 0.0551

4 0.1324 0.0619 0.0514 0.0505

5 0.1328 0.0683 0.0477 0.0462

6 0.1170 0.0675 0.0481 0.0464

7 0.1006 0.0498 0.0455 0.0452

8 0.1006 0.0498 0.0455 0.0452

9 0.0832 0.0424 0.0425 0.0427

Fig. 10 Moving point load F(x, B/2, t)
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Fig. 11 DLF versus Non-D taxiing time for square plates with four

different support factors (SF)
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decreasing elastic edge supports of the plate. Between

support factor of 100 and 10, the plate behavior switches

from a nearly SSSS plate to a nearly FFFF plate. In this

zone, the DLF characteristics show more frequent oscilla-

tions over the same taxing time range, as seen for DLF of

plates with support factor 10 and 0.0001. This is due to the

larger prominence of the rigid body modes in the normal

mode summation of the force vibration GDE. Rigid body

motions (heave, pitch, roll) offset the flexural deflections

under the same moving load, reducing the dynamic stres-

ses. However, too little elastic support increases the 3� of
rigid body motion, which adversely affects the perfor-

mance of the floating airport, and leads to radiation waves

(which erode the nearby shore and disturb the naval traffic

in its vicinity). An optimized choice of the elastic support

is necessary to avoid this.

6 Discussion and conclusion

A modal analysis of elastically supported square floating

plates is presented. The dry vibration analysis has been

done by the Galerkin’s method, including the rigid body

modeshapes. Wet vibration analysis has been done using

the flexural modeshapes, to establish the wet natural fre-

quencies. The various modeshapes with unique frequen-

cies, identical twins, and fraternal twins have been

established for different elastic supports. Wet vibration

analysis, with water on one side of the plate, is used to

generate the modal added masses. This is followed by the

forced vibration analysis of a square plate. Dynamic

loading factors of the flexural deflection are calculated for a

range of taxiing time. Optimum support factor ranges are

recommended, which causes lower dynamic stresses,

without exciting too much of the rigid body degrees of

freedom. A support factor of 1000, with a non-dimensional

taxiing time of more than 4.5, is the most recommended.

6.1 Engineering decision

• It is safe to work in the quasi-static zone of the shock

response spectrum, where the non-D taxiing time[2.5.

• Working at a support factor \100 causes the promi-

nence of rigid body modes in the response, and hence it

should be[100.

• Working at too high support factor increases the dynamic

overshoot to*60% in 0.5\ non-D taxiing time\ 2. It

is conducive to work in a support factor of\1000.

• If the non-D taxiing time is very less, i.e., \0.25,

working at a low support factor of \0.0001, gives a

DLF[ 1. In such situations, a stiffer support factor of

[10 gives a DLF\ 1. However, such a situation of

instantaneous stopping of the aircraft is usually not

possible since the aircraft takes some time to decelerate

and come to rest.
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