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Abstract

The focus of this paper is on matching service seekers and service providers,
such as designers and machine owners, in Cloud-Based Design and Manufac-
turing (CBDM). In such decentralized scenarios the objectives and prefer-
ences of service seekers are different from those of service providers. Current
resource configuration methods are unsuitable because they optimize the ob-
jectives of only one type of participants – either service seekers or service
providers. Existing marketplaces based on first-come-first-serve (FCFS) ap-
proach are inefficient because they may not result in optimal matches. To
address these limitations there is a need for mechanisms that result in op-
timal matching considering the private preferences of all the agents. In this
paper, we formulate the resource allocation problem as a bipartite matching
problem. Four bipartite matching mechanisms, namely, Deferred Acceptance
(DA), Top Trading Cycle (TTC), Munkres, and FCFS are analyzed with re-
spect to desired properties of the mechanisms such as individual rationality,
stability, strategy proofness, consistency, monotonicity and Pareto efficiency.
Further, the performance of these mechanisms is evaluated under different
levels of resource availability through simulation studies. The appropriate-
ness of matching mechanisms for different scenarios in CBDM such as fully
decentralized, partially decentralized and totally monopolistic are assessed.
Based on the analysis, we conclude that DA is the best mechanism for totally
decentralized scenario, TTC is most appropriate when cloud-based resources
are used in an organizational scenario, and Munkres is the best mechanism
when all resources are owned by a single agent.
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Nomenclature

|P | Number of service providers

|S| Number of service seekers

µ Matching mechanism

µ(di) Agent to which di is assigned through µ

µR Matching mechanism µ for the preference ordering R

f Single attribute utility

j �i k i strictly prefers j over k

j �i k i prefers j over k

P Set of service providers

p Probability distribution of the attribute values

p−i Set of all service providers excluding pi

qpi Vacancies offered by service provider pj

Rpj Preference ordering of provider pj over its alternatives

Rsi Preference ordering of seeker si over its alternatives

S Set of service seekers

s−i Set of all service seekers excluding si

uij Utility of agent i being matched to alternative j

wki Weight for attribute Xk for agent i

X Set of all attributes
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1. Introduction: Matching Decentralized Service Seekers and Providers

Cloud-based design and manufacturing (CBDM) is a decentralized, service-
oriented design and manufacturing model where participants utilize product
development resources, such as CAE tools and manufacturing equipment,
using cloud computing, and other related technologies [30]. It is an exten-
sion of cloud-based manufacturing (CBM), which is a model for “ubiquitous,
convenient, on-demand network access to a shared pool of configurable de-
sign and manufacturing resources” [31]. One of the primary advantages of
the decentralized model of design and manufacturing over the traditional
manufacturing model of owning all resources is that it addresses the contra-
diction between scarcity and redundancy of manufacturing resources [25]. It
allows small and medium-sized enterprises (SMEs) who lack manufacturing
equipment to benefit from enterprises who own the equipment, but do not
use them at the full capacity. Such a decentralized model is particularly
attractive with the availability of Internet-connected digital manufacturing
equipment such as 3D printers. In such an environment, designers can print
their designs at any 3D printer connected to the cloud rather than at one
particular site.

CBDM involves interactions among two groups of participants: service
seekers and service providers. Service seekers need to manufacture or use
computational resources, but do not possess the capabilities to do so. Service
providers own and operate equipment or other resources and are ready to
offer users instantaneous access to these capabilities. An effective CBDM
platform must be able to effectively support the important tasks of resource
discovery, service scheduling, service matching. Several research efforts have
been focused on issues such as resource virtualization technologies, resource
and service publication and discovery [24], service composition, efficiency [26],
reliability and security management [27] A review of challenges and research
gaps in these emerging manufacturing models is provided by Tao and co-
authors [23].

The focus in this paper is on service matching, which involves determin-
ing which service providers will serve different service seekers. The service
seekers and the service providers have different, often conflicting, objectives.
Service seekers are interested in desired part quality at a minimum price,
while service providers are generally interested in maximizing revenue from
their available capacity. Additionally, the specific quality desired by each
service seeker, and the price they are willing to pay are different; and the
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capabilities of each service provider may be different. Therefore, there are
as many different objectives as there are participants in the system. One of
the primary requirements of a CBDM platform is to determine an optimal
allocation of resources considering the objectives of all the participants.

Conventional resource allocation methods based on multi-objective opti-
mization are inappropriate for matching resources to service seekers in decen-
tralized scenarios because they optimize the objective of one party only. The
commonly used approach for matching in decentralized scenarios is a mar-
ketplace where service providers display capabilities and prices at a central
location (e.g., on a website), and the service seekers self-select the providers
based on their needs. This is a first-come first-serve approach (FCFS) be-
cause if a service provider’s resource is available, it can be used by the service
seeker who requests it first, and is willing to pay the asking price. Such a
model is adopted in 3Dhubs [1], an online 3D printing service platform with
around 25,000 service providers.

Several inefficiencies arise when service seekers are matched to service
providers using FCFS. First, when resources are scarce, service seekers may
have to wait indefinitely in the queue for the most sought after service
providers. Second, only the service seeker’s preferences are considered here,
the preferences of the service provider are not explicitly considered. For ex-
ample, a service provider with a high resolution 3D printer, which is more
suitable to print jobs that demand higher detail capability, may be chosen
first by a seeker who does not need such capability. Third, even in cases
where two service seekers have first preference for the same service provider,
the utility that each service seeker gains may be significantly different. There-
fore, the match obtained from FCFS may not be optimal from the standpoint
of the entire set of participants. Fourth, it is possible for participants to try
and “game” the system by exhibiting strategic behavior, i.e., considering
other participants’ objectives and stating preferences that are different from
their true preferences. For example, a service seeker may consider how much
delay would result if he/she seeks the resource that best matches his/her
requirement as there may be several other seekers in the queue prolonging
the response time. When this happens it is not optimal for a service seeker
to state his/her true preferences, but rather based on expectations about
other service seekers’ preferences. Finally, FCFS does not account for the
specific requirements of different organizational scenarios. For example, for
a central service provider organization, such as Shapeways [21], where all the
resources are owned by the same company and the service seekers are inde-
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pendent designers who are interested in printing their parts, the objective
is to allocate the jobs to the resources to maximize the total utility gained
by the organization. On the other hand, in a totally decentralized scenario,
such as 3Dhubs [1], the utilities of all service providers and seekers need to
be accounted for in the matching algorithm.

To address the limitations of the FCFS matching mechanism, the central
question addressed in this paper is: How can service seekers be optimally
matched to service providers in different decentralized design and manufac-
turing scenarios, considering the true preferences of all agents? We propose
the use of matching theory, which has been used for different matching prob-
lems such as matching students to schools, kidney donors to patients for
transplant, and residents to hospitals. To the best of our knowledge, this
is the first application of matching theory within the CBDM context. We
analyze the applicability of different matching algorithms in different decen-
tralized design and manufacturing scenarios. The effects of strategic behav-
ior of participants on the efficiency of the matching are analyzed. We also
study the influence of dynamic entry and exit of agents on the optimality of
matches, which is crucial in a CBDM framework. Finally, we draw insights
on the effects of market thickness and resource availability on these matching
algorithms through simulation studies.

The paper is structured as follows. In Section 2, we discuss a specific
problem of matching designers with 3D printing service providers, along
with different organizational scenarios. The steps in matching seekers and
providers, and three specific algorithms used in the paper are discussed in
Section 3. The three algorithms are evaluated for different scenarios in Sec-
tion 4. Simulation results are presented in Section 5, and closing comments
in Section 6.

2. Matching Designers and Manufacturers – A Specific Problem in
CBDM

2.1. Illustrative Example: 3D Printing Services

Additive manufacturing is bridging the gap between designers and man-
ufacturers by enabling rapid transition of concepts into physical prototypes
and final products. The increasing popularity of additive manufacturing is
partly due to the availability of mid-level consumer grade 3D printers, and
access to robust 3D modeling software for the creation of geometric models.
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To serve designers for whom it is economically not viable to own different
printers for their needs, there has been an emergence of service organizations,
such as Shapeways [21], who own a variety of 3D printing machines. The
machines range from desktop printers for plastic parts to industrial scale
metal printers, giving designers a myriad of options to choose from based on
their needs. Designers can submit geometric models to these organizations
and get them printed at the quoted price. These organizations typically also
offer quality checks and assistance to designers to help them market and sell
their products in return for a commission.

In addition to 3D printing service organizations, an alternate, decentral-
ized scenario exists where designers who do not possess the necessary proto-
typing resources are able to connect with independent individuals who own
those resources. These interactions are facilitated by service matching orga-
nizations, such as 3D Hubs [1], where designers upload their 3D models and
are able to choose from the available providers. Machine owners can register
their services at these platforms and advertise their printing resources, and
designers can avail these services on a FCFS basis by choosing the machines
that best suit their needs. The machine owner completes the 3D printing
task for a price decided based on designer’s requirements.

Service Seeker S1

Utility:
u1(f11(X1)
+f12(X2)+
. . . f14(X4)

Service Seeker S2

Utility:
u2(f21(X1)
+f22(X2)+
. . . f24(X4)

. . .

Service Seeker SN

Utility:
uN (fN1(X1)
+fN2(X2)+
. . . fN4(X4)

Attributes (X)
• X1 :Resolution
• X2 :Delivery time
• X3 :Tensile Strength
• X4 :Accuracy

Service Provider P1

Utility:
v1(g11(X1)
+g12(X2)+
. . . g14(X4)

Service Provider P2

Utility:
v2(g21(X1)
+g22(X2)+
. . . g24(X4)]

. . .

Service Provider PM

Utility:
vM (gM1(X1)
+gM2(X2)+
. . . gM4(X4)

Probability distributions
over attributes by agent (i)
• pi1 :Resolution
• pi2 :Delivery time
• pi3 :Tensile Strength
• pi4 :Accuracy

P2 ← SN

P2 → SN

Expected Utility for SN if matched with P2 :

E[uN (X)|p21:P24]

Expected Utility for P2 if matched with SN :

E[v2(X)|pN1:N4]

Figure 1: Matching in decentralized design and 3D printing services

The scenario is illustrated in Figure 1. Each designer and machine owner
has different preferences from each other. The designers’ preferences for ma-
chines are based on machine-owner’s attributes such as resolution, tensile
strength, and maximum build size. Resolution is an important attribute be-
cause the quality, detail capability, finish and accuracy of the final printed
part depend on it. The strength of the final part affects its usability as a
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functional prototype. The machine-owner preferences are based on design at-
tributes, such as resolution requirement, geometric properties, and printing
time. Resolution is important to machine-owners because (i) the machine-
owners prefer to fully utilize their resolution capabilities to maximize profits,
and (ii) machine-owners may prefer to print other products in the same run
and would consider a particular resolution range as an ideal match. Geomet-
ric properties, such as size, are important because they affect needs for the
machine’s build area.

2.2. Desirable Properties of Optimal Bipartite Matching in CBDM

Based on their preferences, machine owners can rank order the designers;
and designers can rank order the machine owners. Each designer would like
to be matched to a machine owner who is at the top of their rank ordered list.
Similarly, each machine owner would like to be matched to the top designer
in his/her list. The match is easy if each machine owner is at the top of only
one designer’s rank ordered list, and each designer is at the top of only one
machine owner’s list. However, this is a very restricting case, and is generally
not true. In real scenarios, many designers may be interested in using the
same 3D printer. Therefore, it is rarely possible for everyone to achieve their
first preference. Given that some of the participants will not achieve their
first preference, the goal is to match designers and machine owners in a way
that is optimal, in some sense, for the market as a whole.

Since there are multiple decision makers with different objectives, opti-
mality can be defined in many ways. One possible definition is based on the
maximization of total utility achieved by a set of agents (e.g., the set of all
service providers). Such an optimal matching can be achieved by generalized
assignment algorithms, such as the Munkres algorithm [19]. Such algorithms
are appropriate only if the set of agents belongs to the same organization,
and have a collective preference for the entire set. The algorithm fails when
agents in the set are independent and the utilities of both the service seekers
and the providers need to be considered.

In addition to optimality, the match should also have a number of other
desirable properties. First, the matches should be compatible with the prefer-
ence structures. For example, there should not be any designer-manufacturer
pair, who prefers to be matched with each other, but are not matched by the
CBDM system. If there is such a pair, then that pair has an incentive to col-
lude outside the CBDM platform. Second, participants can dynamically enter
or exit the system in a decentralized environment such as CBDM. Therefore,
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the matching mechanism should be insensitive to participants entering and
leaving the system. For example, if a matched designer-manufacturer pair
leaves the system, there should not be any change in the matches for the
rest of the participants. Third, addition of service providers should only help
the service seekers. Finally, the system should prevent “gaming”, i.e., mis-
representation of information by individuals (or group of) participants. A
matching mechanism should avoid strategic behavior, which results in the
stated preferences being different from the true preferences. The matching
mechanism should enable participants to base their preference ordering solely
on their true preferences. This is called the truthful revelation property of
the mechanism.

These desirable properties are formally described and quantified in Sec-
tion 4.1. No matching algorithm can satisfy all these properties. Based on
the scenario in question, certain properties may be more important than
others. For example, the likelihood of different types of gaming is different
depending on the CBDM platform that the agents are operating on. There-
fore, the goal is to find the best possible matching mechanism depending
on the scenario. To achieve this, the first step is to analyze the possible
scenarios. Three broad scenarios are discussed in Section 2.3.

2.3. Matching Scenarios in CBDM

Consider three representative scenarios covering a broad range of appli-
cations: a) fully decentralized scenario, b) monopolistic scenario, and c)
organizational scenario. The strategic characteristics of the agents on both
sides, service seekers (S) and service providers (P ), are compared for the
three scenarios in Table 1.

2.3.1. Fully Decentralized Scenario

This is a completely decentralized market scenario where independent
service seekers avail services from independent service providers. The service
seekers and providers will be collectively referred to as agents. The service
seekers are designers who do not possess necessary resources to make physical
prototypes of their designs, and service providers are companies or individuals
owning resources such as CNC machines or 3D printers. It is assumed that
each designer and manufacturer is an independent strategic entity aiming to
maximize his/her own payoff. It is also assumed that each agent can engage
in strategic behavior such as revealing preferences that are different from
their true preferences.
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Table 1: Comparison of strategic behavior of agents in the three scenarios

Scenario Set Size
Service
Seekers
(S)

Service
Providers
(P )

Coalitions

Fully decen-
tralized

|S| > 1, |P | > 1 Strategize Strategize Unlikely

Monopolistic |S| > 1, |P | = 1 Strategize
Not Strate-
gize

No coalition

Organizational |S| > 1, |P | = 1 Strategize
Not Strate-
gize

Likely

The agents may exhibit the following types of strategic behavior: (i) a
service seeker and a provider may sign contracts outside the platform, (ii)
a service provider may manipulate the system by providing false informa-
tion about their capacity, and (iii) service seekers may submit manipulated
preference characteristics to increase the probability of matching with the
desired or most sought after service providers. The objectives of the match-
ing algorithm in the fully decentralized scenario are: it should be immune to
the strategic behavior of agents, it should optimize the utility of both service
seeker and provider, the optimal matching should remain the same even if
some agents leave the system once matching is done.

2.3.2. Monopolistic scenario

In this scenario, a single organization (e.g., Shapeways [21]) owns a wide
variety of resources and independent designers avail services from this or-
ganization. Designers submit their design requirements to these companies
and get them printed or manufactured. In this scenario, the service provider
is a single agent or company, which is also responsible for matching service
seekers to the resources. Hence, the organization does not exhibit strategic
behavior. Unlike in the totally decentralized scenario, here both the resource
provider and algorithm implementer is the same agent whose sole objective
is to maximize its utility by matching seekers to the resources.

The objective of an appropriate matching mechanism is only to maximize
the payoff of the organization. The utility gained by the service seekers is
not considered here. The preferences of the service seekers are indirectly
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accounted for through customer satisfaction, which is generally a part of the
service-provider’s preferences.

2.3.3. Organizational scenario

This scenario is different in the sense that both service seekers and ser-
vice providers belong to the same organization. All the service providers
are owned by the same organization and hence are non-strategic in nature.
This scenario can represent students of a university availing 3D printing re-
sources of the university to print their design projects, or designers in a R&D
company printing prototypes to validate their designs.

Service seekers who belong to the same company have a greater incentive
to strategize as the information and strategies about service seekers and
service providers are readily available. The probability of strategic coalitions
is higher in this scenario as the agents belong to the same organization.
An appropriate matching mechanism should be strategy-proof to coalition
formation. It should also consider the utility functions of both the service
seekers and service providers.

3. Steps for Matching

We propose three steps in optimal matching of designers and manufac-
turers within the CBDM framework. The steps are shown in Figure 2. The
first step involves quantification of preferences of designers and manufactur-
ers using the expected utility theory [15]. The second step involves ranking
of alternatives of each participant based on the expected utilities. The third
step is to analyze the CBDM scenario and utilize the matching algorithm
based on the most relevant criteria based on interaction, objectives and pri-
vate information of agents. These steps are discussed in detail in Sections 3.1
through 3.3.

We consider a set of service seekers (i.e., designers), S = {s1, s2, . . . , s|S|},
availing manufacturing services from a set of service providers (i.e., manu-
facturers), P = {p1, p2, . . . , p|P |}. Service seekers and service providers are
collectively referred to as agents A = S ∪ P and total number of agents
|A| = |S| + |P |. Agents in P constitute the alternative set for agents in S,
and vice-versa. Each service provider, pj, offers a cap on the maximum num-
ber of service seekers it can serve, which we call vacancy denoted by qpj with
qpj ≥ 1. We assume that the cap is in terms of the number of designs a ser-
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s1,
s2,
. . .

p1,
p2,
. . .

Preference
ordering
of Seeker

Preference
ordering of
Provider

Matching
mechanism

s1 µ(s1)

s2 µ(s2)

si µ(si)

...

︸︷︷︸
Matched pairs

⇔

⇔

⇔

Seeker utility

Provider utility

R
S

RPSeeker

attributes

Provider

attributes

Figure 2: The above flow chart summarizes the approach followed.

vice provider can manufacture, and not the amount of time the manufacturer
is willing to work.

3.1. Quantification of Preferences of Service Seekers and Service Providers

We use the utility-based procedure for quantification of agents’ prefer-
ences, as demonstrated for Fernández et al. [11]. To quantify the preference
characteristics of the agents, the first step is to identify all the attributes that
service seekers and service providers consider while evaluating their prefer-
ences. All service seekers in S value a set of attributes of the service providers
in P , e.g., machine resolution and the attributes of the material offered. Simi-
larly, the service providers in P value certain service-seeker attributes such as
printing time. We represent the union of service seeker and service provider
attributes as X = {X1, X2, . . . , Xn}. In the rest of the paper, si and pj de-
note ith service seeker and jth service provider respectively, while Xk denote
the kth attribute.

Based on the preferences for each attribute Xk, service seeker si’s single-
attribute utility functions fki are obtained using standard utility assessment
procedures (see [15] for details). The single attribute utility functions fki
are then combined into si’s multi-attribute utility function, ui. We have
ui(X) = u(f1i(X1), f2i(X2), . . . , fni(Xn)). For illustration, assuming the ad-
ditive form of the multi-attribute utility function, si’s utility function is
ui(X) =

∑n
k=1wkifki(Xk), where wki is the weight that si associates to at-

tribute Xk, such that
∑

k wki = 1. Note that each service seeker si ∈ S may
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care only about a subset of relevant attributes in the set X. These subsets are
generally different for different agents, particularly between service providers
and service seekers. The weights for those attributes that the agents do not
care about are assigned as zero.

The next step is to define the probability function of the attribute value.
For service seeker si we are interested in the probability function of the
attributes of service provider pj. We represent the pdf of attribute Xk asso-
ciated with service provider pj as pkj(Xk). The probability distribution and
the multi-attribute utililty functions are combined to obtain the expected
utility that si gains by being matched to each of the si’s alternatives pj. For
the case of additive multi-attribute utility functions the following equation
is valid for expected utility calculation,

E[uij(X)] =
n∑

k=1

wki

∫
[fkipkj]dx (1)

where E[uij(X)] represent the utility of service seeker si for provider pj.
Repeating the same steps for service providers, the expected utility gained
by service provider pj being matched to each of its alternatives si is given by

E[uji(X)] =
n∑

k=1

wkj

∫
[fkjpki]dx (2)

In cases where additive independence of attributes is not valid the ex-
pected utility expression is re-formulated. However, a detailed discussion of
such special cases is beyond the scope of this paper. Fernández et al. [11] pro-
vide additional insights on such reformulations for the 3D printing scenario.

3.2. Ranking of Alternatives

Based on the expected utilities thus generated, the alternatives for each
agent are rank ordered. Higher the expected utility, lower is the rank. We
include the agent itself in the set of its alternatives. All the alternatives that
are unacceptable to the agent are ranked below the agent. An agent matched
to itself represents an unmatched agent. For example, if the design cannot
be printed on any of the available machines because the volume exceeds the
capacity of each machine, then the design remains unmatched to any of the
machines. Therefore, the set of alternatives for a seeker (si) is the set of
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providers (P ∪ si), and the set of alternatives for a provider (pj) is the set of
seekers (S ∪ pj).

The ranking of the alternatives of each agent si is represented as Rsi . The
preference ordering thus generated is assumed to be complete, anti-symmetric
and transitive as utility theory is based on assumption of rational behavior.
We define Rs−i

as the preferences of all service seekers except si and RS as the
preference ordering of all service seekers combined. We have RS = Rs−i

⊗Rsi .
Here, ⊗ symbolizes the product of vector spaces. The preference ordering of
each agent is a vector and falls in a vector space. Preference ordering of a
collection of agents falls in product of these vector space. Similarly, for all
service providers, RP = Rp−j

⊗Rpj .

3.3. Matching Algorithms

Matching algorithms are aimed at implementing matching mechanisms [16].
In this paper, we use the words mechanism and algorithm interchangeably.
A mechanism is a mathematical structure that models institutions through
which economic activity is guided and coordinated [13]. A mechanism results
in a matching µ : S → P ∪ S that

(i) assigns each service seeker to an alternative, i.e., ∀si ∈ S : µ(si) ∈ P∪si,
where µ(si) is the service provider to which service seekers si is matched
and

(ii) implements the matching without exceeding the vacancy of any service
provider, i.e., ∀pi ∈ P : |µ−1(pi)| ≤ qpi ; where µ−1(pi) is the set of
service seekers matched to service provider pi

The best matching mechanism µ∗ matches S and P with the preference
profile R = RS ⊗ RP in the most optimal way. The notion of optimality is
based on the scenario and the desired properties for that scenario.

In the following, we present three different matching mechanisms: De-
ferred Acceptance (DA), Top Trading Cycles (TTC), and Munkres’ mecha-
nism.

3.3.1. Deferred Acceptance (DA) mechanism

The first DA mechanism was proposed by Gale and Shapley [12] as a so-
lution to the stable marriage problem1. Gusfield [7] discusses the extensions

1Extensions of the basic mechanism have been proposed, for example [18]. Here we
focus only on the fundamental mechanism
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and implications of this mechanism in detail. This mechanism guarantees a
stable matching solution in finite time. Even 50 years after it was first for-
mulated, DA is still applied in the National Residency Matching Program [2]
where medical residents are assigned to hospitals based on the preference
ordering of both residents and hospitals. It has also been used in matching
workers to firms [6]. Within the service seeker and service provider context,
the mechanism can be used as follows:

Algorithm 1 Deferred Acceptance (DA) mechanism

Set each si ∈ S as unassigned and each pi ∈ P as totally unsubscribed

while (∃pi ∈ P who is undersubscribed) and (∃sk ∈ Rpi not provisionally
assigned to pi) do

1. si is first such sk in Rpi and si is provisionally assigned to pj
2. unassign si from pj and provisionally assign si to pi
3. for each successor pk on Rsi remove pk and si from each other’s list

end while

3.3.2. Top Trading Cycles (TTC) mechanism

TTC was proposed by Shapley and Scarf [22]. TTC has been successfully
applied for kidney exchange [20] and matching students to schools [4]. The
matching generated by TTC enjoys useful properties such as group-strategy
proof and efficiency, but lacks stability (see further details in Section 4.2).
The mechanism is implemented in the service matching scenario as follows:

Algorithm 2 TTC mechanism

Set each si ∈ S as unassigned and each pi ∈ P as totally unsubscribed

while (∃pi ∈ P ) or (∃si ∈ S) do

1. All si ∈ S points to top preferred pj ∈ P and vice-versa;

2. any agent who prefers to remain unmatched points to itself forming
self-cycle;

3. each si is allotted the pj it points to and vice-versa;

4. all allotted si are removed and capacity of all allotted pj is reduced
by one;

5. remove all pj whose capacity reduces to zero

end while
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3.3.3. Munkres’ mechanism

Munkres’ mechanism [19] can optimize the expected utility only for one
set of agents. Unlike TTC and NRMP, Munkres optimizes the absolute
value of expected utility attained by one set of agents. The details of the
mechanism are as follows:

Algorithm 3 Munkres’ mechanism

Populate matrix Bo×o, where o = max(|S|, |P |) such that element bi,j of B
represent utility of si ∈ S for pj ∈ P ; empty cells in the matrix are replaced
by the largest entry.

while the number of lines covering the zero elements equals the number
of rows in matrix B do

1. For each element in a row subtract the minimum value;

2. repeat the above step for columns;

3. cover each zero in the matrix with minimum lines

4. add the minimum uncovered element to every covered element; if
covered twice, add the minimum element twice

end while
while either S 6= φ and P 6= φ do

1. select a matching pair by choosing a set of zeros

2. reduce the capacity of matched manufacturers by one;

3. remove those pj ∈ P whose capacity reduced to zero and remove those
si ∈ S who were matched;

4. repopulate matrix B with the updated S and P ;

end while

4. Evaluation of Matching Mechanisms for CBDM

4.1. Criteria for Evaluation

This section describes the set of criteria relevant to a diverse set of match-
ing scenarios in CBDM framework. The important criteria include (i) in-
dividual rationality [5], (ii) stability [12], (iii) consistency [10], (iv) resource
monotonicity [8], (v) population monotonicity [9], (vi) strategy proofness [16],
(vii) group strategy proofness [16], (viii) Pareto efficiency [5], (ix) absolute
majority [3], and (x) effective cardinal efficiency [29].
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Individual Rationality: A mechanism µ is individually rational if (i) every
agent matched through µ prefers its matched partner over being unmatched,
and (ii) there is no under-utilized service provider who is more preferred by
any service seeker than its match. Here, an under-utilized service provider pj
is one who is matched to a lower number of service seekers than its capacity
qpj . Mathematically, individual rationality can be written as:

(i) ∀si ∈ S, µ(si) �si si
(ii) @si, pj such that pj �si µ(si) and qpj > µ−1(pj)

Practical examples where individual rationality gets violated are: (a) a com-
pany, outsourcing a manufacturing job to the cloud to save time and cost in-
curred to the company, matched to a service provider who demands a higher
price than carrying out the job in-house; (b) a service seeker’s requirements
exceed the capacities of a service provider being matched to (e.g., design
volume exceeding the build volume of the 3D-printer owned by the service
provider). In all these examples the agent is better off remaining unmatched.
Hence, the matching mechanism should eliminate those match combinations
where individual rationality assumption breaks.

Stability: The mechanism is said to be pairwise stable if it is individually
rational and has no blocking pair. Service seeker si and service provider pj
are said to be a blocking pair in µ if

(i) a different service seeker sk is assigned to pj under the mechanism µ,
i.e., µ(sk) = pj,

(ii) si strictly prefers pj over its assignment, i.e., pj �si µ(si), and

(iii) reciprocally, pj strictly prefers si over its current assignment sk, i.e.,
si �pj sk

If a mechanism is not stable then there is an incentive for the blocking
designer-manufacturer pair to collude outside the CBDM application plat-
form affecting the efficiency of the matching process.

Consistency: The mechanism is consistent if the optimal allocation re-
mains the same even if some agents leave along with their matched pairs.
For a consistent mechanism µ, if

(i) φ ⊂ S ′ ⊆ S and φ ⊂ P ′ ⊆ P , and

(ii) µ : S → S ∪ P and µ′ : S ′ → P ′ ∪ S ′

then µ(si) = µ(s′i) for all si ∈ S and s′i ∈ S ′; where S ′ and P ′ are the
set of designers and manufacturers who leave the matching mechanism after
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matching is performed. CBDM is a dynamic system with large number of
agents entering and leaving the system to seek and provide services. In such a
setting, it cannot be guaranteed that the agents would accept the assignment
generated by the platform. Consistency property ensures that the efficiency
of a matching mechanism is not lost due to dynamic entry and exit of agents.

Monotonicity: The mechanism is called monotone in a bilateral matching
if the welfare of each agent on one side increases (decreases) by addition
(removal) of agents from the other side. If agents on the service provider
side are the ones being added or removed and the welfare achieved by the
each service seeker either strictly increases or decreases, then we call the
matching mechanism resource monotone. Mathematically, if P ′ is a set of
service providers different2 from set P , with either P ′ ⊆ P (some service
providers left from original set P ) or P ⊆ P ′ (new service providers joined
the original set P ), then either µRS⊗RP

(si) � µRS⊗RP ′
(welfare of all service

seekers decrease from P to P ′) or µRS⊗RP
(si) � µRS⊗RP ′

(si) (welfare increase
from P to P ′) for each si ∈ S. Similarly the mechanism is called population
monotone if the welfare of each resource provider is increased (decreased) by
the addition (removal) of service seekers.

For example, consider matching in ‘3DHubs’ [1]. Addition of a new ma-
chine into the mechanism should only help the designers in getting a higher
ranked match, and addition of a new designer should only increase the num-
ber of suitable matches available to the service provider. Monotonicity en-
sures that this property holds true for matching. Monotonicity also provides
the added advantage that welfare of each service seeker increases by adding
a new machine, and not just the total welfare of all service seekers.

Strategy-proof: Mechanism µ is strategy-proof if no single agent is better
off misrepresenting the preferences. Agent si would exhibit strategic behav-
ior if µRs−i⊗R′si

(si) �si µRs−i⊗Rsi
(si), where R is the real preference structure

and R′ is the misrepresented preference structure. If the rule is immune
to such behavior then it is strategy-proof. Consider the case where agents
repeatedly outsource their needs to the CBDM framework. Over time the
agents may learn how the matching takes place and the matching mecha-
nism is susceptible to loss in efficiency due to strategic behavior from the
agents. For example, in FCFS a designer can increase the probability of be-

2it can also be the same set of service providers offering a reduced or increased cap on
vacancy i.e., q′pi

6= qpi
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ing matched to a highly sought after machine owner by switching the first
and second choice. The machine owners could misrepresent the capacity of
machines to increase the probability of getting matched. Hence, there is a
need to make the platform immune to such strategies.

Group Strategy-proof: The mechanism is group strategy-proof if even a
coalition of agents is not better off misrepresenting the preference ordering of
all the individuals in the coalition. Agents in a set S ′(⊆ S) have an incentive
to form coalition and falsify their preference ordering in a rule µ if (i) all
agents in set S ′ do not decrease their welfare by colluding, and (ii) at least
one agent strictly increases its welfare.

(i) µRS/S′⊗R′S′
(si) �si µRS

(si) ∀si ∈ S ′ and

(ii) µRS/S′⊗R′S′
(si) �si µRS

(si) for some sj ∈ S ′

If agents who participate in the matching know each other well then the
mechanism would be susceptible to coalition strategies [7]. In the scenarios
discussed this gaming behavior is probable in the organizational scenario
where the agents involved in the matching process are co-workers.

Pareto-efficiency: A mechanism µ is Pareto-efficient with respect to a set
of agents if there is no other mechanism µ′ that strictly increases the utility
of a subset of agents keeping the utility of the rest of the agents the same.
Rule µ is Pareto efficient with respect to set S if ∀R @µ′ such that

(i) µ′(si)Rsiµsi ; ∀si ∈ S, and

(ii) ∃sk ∈ S with µ
′
(sk)Pskµsk

Similarly, the definition can be extended to Pareto efficiency with agents of
set P . Mechanism µ is Pareto efficient if it is efficient with respect to both
S and P .

Absolute majority: A mechanism is said to satisfy the absolute majority
property if it maximizes the number of agents who are matched to their first
choice in their submitted preference ordering. In many cases, the designers
would rate their first desired manufacturer much above the subsequent ones;
they would be indifferent between second and third choices. Hence, it is
always desirable to have a mechanism that matches the maximum number
of agents to their first choice.

Effective cardinal efficiency: For sets S and P , effective cardinal effi-
ciency is the total expected utility achieved by each agent in sets S and M
respectively.
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4.2. Using the Criteria to Compare the Mechanisms for the CBDM problem

Table 2 shows competing properties while implementing mechanism de-
sign for decentralized design and manufacturing in a strategic setting. There
is no universal mechanism that satisfies all these properties. For example,
no mechanism is both stable and efficient [5]. However, depending on the
scenario, the mechanism that has the properties most relevant to the scenario
in concern can be chosen.

Table 2: Comparison of mechanisms in terms of its properties

Criterion DA TTC Munkers

Individual rationality 3 3 3

Stable 3 if strongly acyclic 7

Resource monotone if weakly acyclic if strongly acyclic 7

Population monotonic if weakly acyclic if strongly acyclic 7

Consistency if weakly acyclic if strongly acyclic 7

Strategy-proof 3 3 7

Group-strategy proof if weakly acyclic 3 7

Pareto efficiency if weakly acyclic 3 3

Absolute majority 7 7 7

Effective cardinal efficiency 7 7 3

DA mechanism can be implemented in two ways, based on the set of
agents that proposes [7]. DA mechanism has the property that it is optimal
with respect to the agents who propose during its implementation. Thus,
if the service providers in P propose, then it is P -optimal, whereas if the
seekers propose then it is S-optimal. The former provides the optimal stable
matching for agents of set P whereas the latter results in optimal matches for
agents in set S. In the rest of the paper, these mechanisms are labeled PODA
(Provider Optimal DA) and SODA (Seeker Optimal DA) respectively. In
addition to being P -optimal, PODA is strategy-proof with respect to agents
in P however agents in S can strategize. Similarly, SODA is strategy-proof
only with respect to agents in S. Thus PODA is not group-strategy proof
with agents in S. Kojima [17] shows that PODA is not group-strategy proof
if there is at least one pi ∈ P with qpi > 1. In such cases one can generate
scenarios where agents in P can manipulate via misreporting vacancies or
being involved in prearranged matches outside the application platform.
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DA always produces stable matching. It is resource monotonic and popu-
lation monotonic but not always consistent. Although DA Pareto dominates
any other stable allocation, it is not optimal. Also, DA is strategy proof but
not group-strategy proof. Whereas TTC is efficient and group-strategy proof
but lacks consistency and is not resource and population monotone.

Unlike TTC and DA which only account for the ordinal ranking of the
preference ordering, Munkres mechanism maximizes the cardinal value of to-
tal expected utility for a set. Hence, when the aim is to maximize expected
utility of non-strategic agents belonging to the same set (either S or P ) then
Munkres is the best choice. For example, organizations such as Shapeways
can adopt Munkres mechanism to match the uploaded designs to the right
machines. But it breaks down in 3Dhubs where the individuals agents in
either set are utility maximizing strategic agents. Moreover, Munkres mech-
anism is not population monotone, resource monotone, consistent, stable and
strategy proof. In a bipartite matching situation the utility of the two sets
of agents needs to be maximized. Munkres can optimize only a single set at
a time.

5. Simulation Results

In the decentralized service seeker-provider scenario, discussed in Sec-
tion 3, there are Permutation(

∑y
i qpi , x) possible unique matching combi-

nations. The best mechanism for a scenario is the one that best satisfies
the properties in Table 2. In Section 4, a comparison of the performance
of the mechanism is presented based on various properties. The comparison
does not provide information about the effects of uncertainty, such as uncer-
tainty in the order of arrival of service requests and preference characteristics.
Additionally, the implications of scarcity or abundancy of resources on the
performance of the mechanisms are also not clear based on these properties.
As an example, if resources are abundant such that for every new service
request there is an available slot on the first preferred resource provider then
FCFS would perform well. To analyze the effects of uncertainty and resource
availability, simulation studies are carried out. Simulation results related
to the performance of the mechanisms under scarce, balanced and surplus
supply of resource are discussed in this section.

Two measures are used to compare the efficiency of different mechanisms:
(i) average rank, and (ii) total expected utility. An agent si has rank r if
matched to its rth choice in the agent’s preference ordering. The average rank
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of designers (manufacturers) is obtained by averaging the rank of all designers
(manufacturers) matched using the mechanism. The total expected utility of
designers (manufacturers) is obtained by aggregating the utility gained by all
the designers (manufacturers) through the matching mechanism. By defini-
tion utility attained by an unmatched designer is zero. The total utility of a
set quantifies the collective performance of the set of agents, whereas average
rank over all realized matches in a set quantifies the extent to which individ-
ual preferences are met. Thus, both these measures are used to evaluate the
performance of different matching mechanisms.

The following three cases of resource availability are simulated:

(i) resource scarce case, where
∑y

i qpi < x;

(ii) resource balanced case, where
∑y

i qpi = x; and

(iii) resource surplus case, where
∑y

i qpi > x.

As an illustrative scenario, there are 25 designers being matched to 5 manu-
facturers. Assuming that all manufacturers serve the same number of design-
ers, qpi < 5 represents a resource scarce case, qpi = 5 is a resource balanced
case, and qpi > 5 is resource surplus. To represent the three cases, simulation
results are presented for qpi = 3, qpi = 5, and qpi = 7 for each manufacturer.
The insights drawn are consistent for other values of qpi as well.

5.1. Illustrative Example: 3D printing Service Framework

Consider a scenario where a set of 25 designers (|S| = 25 where service
seeker set S is the set of designers) are seeking services from a set of 5 man-
ufacturers (|P | = 5). The 25 designs used in this example were downloaded
from Thingiverse [28]. Each of the 5 manufacturers owned one of these five
3D printers: Makerbot 2 (P1), Ultimaker 2 (P2), Witbox (P3), B9 Creator
(P4), Form 1+ (P5). First three machines are FDM (Fusion Deposition Ma-
terial) machines while the last two are based on the SLA (StereoLithography)
process. Each manufacturer owned materials compatible with their respec-
tive machine. Material data was collected from iMaterialise [14] for different
FDM and SLA materials. Representative images of the designs used are
shown in Figure 3.

The manufacturer attributes concerning the designers are machine vol-
ume, machine resolution, material tensile strength, manufacturer proximity
whereas designer attributes concerning the manufacturers are printing time,
material requirement, and design dimensions. The resolution capabilities of
the machines varied from 5 to 100 microns. Designers could list their job on
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Figure 3: Sample designs used in the illustrative scenario

an urgency scale from 1 to 5. Further the designers could state their reso-
lution and tensile strength range requirements. The numerical values used
for the design printing time and machine dimension attributes are listed in
Table 3.

Table 3: Printing time and design dimensions corresponding to each designer-manufacturer
pair. The machines are numbered from p1 to p5 and 25 designs are numbered from s1 to
s25, The 25 designs used in this example were downloaded from website thingiverse [28].
3D printers used were Makerbot 2 (p1), Ultimaker 2 (p2), Witbox (p3), B9 Creator (p4),
Form 1+ (p5). Material data was collected from iMaterialise [14]. Empty cells denote
incompatible design-machine pairs.

Printing Time in machine type (hr) area (cm2) vol (cm3)
p1 p2 p3 p4 p5

s1 0.28 0.35 0.40 0.12 0.17 18.6 15.55
s2 0.15 0.13 0.15 0.13 0.15 304.41 94.08
s3 0.13 0.08 0.12 0.25 0.20 407.77 13.44
s4 0.03 0.03 0.05 0.33 0.23 0.62 0.04
s5 2.27 1.77 1.83 0.72 0.70 4.28 11.13
s6 0.75 0.83 1.13 0.97 0.60 23.31 1.06
s7 0.77 1.37 1.07 1.20 0.88 49 28.92
s8 1.93 2.02 2.28 2.15 1.43 13.14 0.67
s9 3.15 3.93 4.90 2.67 1.73 57.5 9.99
s10 6.25 7.67 8.97 3.30 2.40 103.58 26.71
s11 2.25 1.55 1.88 3.68 2.25 74.01 21.23
s12 4.73 6.15 6.85 4.27 2.68 38.36 29.62
s13 9.48 11.28 13.00 4.65 6.25 56.91 199.65
s14 7.73 10.13 11.15 5.13 5.33 1.32 0.42
s15 2.07 1.92 2.00 5.77 56.5 330.65
s16 12.92 16.88 18.52 7.35 8.20 6.25 11.27
s17 2.00 116.91 16.43
s18 3.88 4.10 4.78 0.97 76.42 298.12
s19 3.48 3.62 3.93 1.13 57.3 286.37
s20 11.02 12.50 58.87 55.05
s21 13.82 17.28 19.10 6.65 72.4 77.79
s22 24.87 34.15 43.37 2.3
s23 11.98 12.80 16.92 5.38 99.97 1227.76
s24 10.37 30.98 12.73
s25 48.92 340.62 54.06

Utility functions of individual agents are derived and preference ordering
is generated using the procedure described by Fernández et al. [11]. An exam-
ple of expected utility of service seeker (designer) s1 for service provider (man-
ufacturer) p2 is described. Service provider s1 preferred the attribute tensile

22



strength with a weight of 0.8 and resolution with a weight of 0.2. The left
hand side utility function of designer s1 for attribute resolution x1 is defined
as f11(x1) = −0.003 x1

2+0.049 x1−0.9446 in the range 22µm < x1 ≤ 60µm,
and the right hand side utility defined between 60µm < x1 ≤ 90µm is
f11(x1) = −0.0004 x1

2 + 0.0333 x1 + 0.6. For designer s1, the single at-
tribute utility for tensile strength varies from 60 MPa to 75 MPa and the
function is given by f12(x2) = −0.001 x2

2 + 0.010 x2 + 1.200. Assuming
additive independence of the attributes, multi-attribute utility function of
designer s1 is u(X) = 0.2f11(x1) + 0.8f12(x2). Manufacturer p2 offers resolu-
tion between 50 µm and 300 µm and tensile strength between 22 MPa and 41
MPa with uniform probability. Using these function values the expected util-
ity gained by designer s1 being matched to manufacturer p2 was calculated
as E[u12(X)] = 0.353. Single attribute utility functions of manufacturer p2
were g23(x3) = −0.000 x3

2 + 0.0024 x3 + 0.1975, g21(x1) = −0.000 x1
2 −

0.0009 x1 + 1.052 and g24(x4) = −0.0327 x4
2 + 0.4327 x2 − 0.2082. Again

assuming additive independence, multi-attribute utility function for manu-
facturer p2 is defined as u(X) = 0.375g23(x3) + 0.375g21(x1) + 0.25g24(x4).
Using these functions the expected utility gained by manufacturer p2 being
matched to s1 was calculated as E[u21(X)] = 0.071. Similarly, expected util-
ities of each agent are calculated for each of their potential matches. Some
of the matches are incompatible, e.g., the design may not fit in the build
envelope of the machine. In such cases, the utility of matching is zero. Ta-
ble 4 shows the results of expected utilities calculated for each agent for each
alternative.

Based on the expected utilities the designers are matched to manufac-
turers using the Munkres, NRMP, TTC, and FCFS mechanisms. The total
expected utility gained, and the average rank of the designers and manu-
facturers are then calculated for each mechanism. The utility and rank are
dependent on the preferences of the agents. In FCFS these may also depend
on the order of arrival of the service requests. All the illustrative numerical
values listed in Tables 3 and 4 are for a particular preference distribution
and the order of arrival of the service requests. Thus, there is variability
associated with the performance of the mechanism. To account for the vari-
ability, several combinations of preference distributions were used, and the
results were analyzed statistically. Urgency, resolution and material require-
ment of each designer and manufacturer and the relative weightage of these
attributes were randomized for each run. For each random preference dis-
tribution so generated, all the four matching mechanisms were implemented
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Table 4: Expected utility achieved by each agent for each of their alternatives. Numerical
value tabulated in row i and column j indicates the expected utility achieved by service
seeker si being matched to service provider pj and the entry in bracket indicates the
expected utility achieved by pj in return. ‘-’ represents that the match is not feasible.

Manufacturer
/

Designer
(p1) (p2) (p3) (p4) (p5)

(s1) 0.355 (0.196) 0.353 (0.071) 0.355 (0.313) 0.000 (0.191) 0.004 (0.527)
(s2) 0.000 (0.001) 0.047 (0.001) 0.043 (0.001) - -
(s3) 0.000 (0.001) 0.004 (0.002) 0.000 (0.001) - -
(s4) 0.019 (0.000) 0.004 (0.001) 0.000 (0.000) 0.349 (0.088) 0.000 (0.056)
(s5) 0.000 (0.000) 0.022 (0.001) 0.017 (0.000) 0.470 (0.088) 0.003 (0.000)
(s6) 0.379 (0.196) 0.377 (0.071) 0.379 (0.313) 0.000 (0.197) 0.004 (0.527)
(s7) 0.355 (0.039) 0.453 (0.021) 0.326 (0.063) 0.148 (0.11) 0.129 (0.577)
(s8) 0.233 (0.039) 0.324 (0.021) 0.233 (0.063) 0.094 (0.108) 0.101 (0.576)
(s9) 0.012 (0.000) 0.005 (0.142) 0.000 (0.013) 0.430 (0.091) 0.000 (0.001)
(s10) 0.307 (0.196) 0.283 (0.072) 0.284 (0.314) - 0.000 (0.542)
(S11) 0.612 (0.040) 0.875 (0.021) 0.637 (0.063) 0.246 (0.191) 0.247 (0.577)
(s12) 0.326 (0.097) 0.513 (0.021) 0.386 (0.063) 0.131 (0.315 0.140 (0.520)
(s13) 0.490 (0.040) 0.680 (0.021) 0.490 (0.063) 0.197 (0.256) 0.199 (0.521)
(s14) 0.431 (0.039) 0.567 (0.021) 0.408 (0.063) 0.178 (0.130) 0.161 (0.520)
(s15) 0.016 (0.000) 0.005 (0.001) 0.000 (0.000) 0.385 (0.091) 0.000 (0.001)
(s16) 0.000 (0.000) 0.004 (0.001) 0.000 (0.000) 0.282 (0.088) 0.006 (0.000)
(s17) - 0.053 (0.001) - - 0.009 (0.001)
(s18) 0.031 (0.072) 0.002 (0.170) 0.000 (0.020) - 0.000 (0.016)
(s19) 0.008 (0.000) 0.006 (0.050) 0.000 (0.031) - 0.000 (0.057)
(s20) - 0.629 (0.021) 0.453 (0.063) - 0.179 (0.577)
(s21) 0.000 (0.000) 0.004 (0.001) 0.000 (0.000) - 0.006 (0.001)
(s22) 0.227 (0.196) - 0.287 (0.313) - 0.011 (0.542)
(s23) 0.355 (0.196) 0.353 (0.072) 0.355 (0.314) - 0.004 (0.527)
(s24) - - 0.490 (0.063) - 0.199 (0.520)
(s25) - - 0.350 (0.063) - -

and the overall efficiency was compared.

5.2. Influence of Resource Availability

Figures 4 through 7 show a comparison of the total utility and average
rank by each of the mechanisms under various resource conditions. All the
mechanisms were run for 100 randomly generated preference ordering for
each of resource scarce, resource balance and resource surplus setting. The
boxplots of the total utility attained by designers and manufactures under
various resource conditions are shown in Figures 4 through 6. While Figures 4
through 6 show total utility, Figure 7 shows the average rank attained by
designers and manufacturers under resource balanced conditions.

Comparing DA and TTC in Figure 4, it is observed that the total man-
ufacturer utility gained by TTC is more than in DA even though a PODA
(manufacturer optimal) mechanism is implemented. This is because PODA
guarantees stability and can operate only in the stable space of solutions.
But as the resource availability increases from scarce to balanced and abun-
dant, the performance of TTC and DA is nearly similar in terms of the
manufacturers’ utilities. This is because the set of stable solutions grows
rapidly as the resources get abundant and the formation of weak and strong
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Figure 4: Total expected utility attained by manufacturers and designers in resource scarce
case

cycles [7] decreases and efficiency of DA matches that of TTC with respect to
manufacturer utility. Thus, in fully decentralized market when demand and
supply of services and resources are balanced, DA performs as well as TTC
for manufacturers even though it operates in the space of stable solutions. In
addition DA mechanism offers stable solutions and hence a mechanism based
on DA is the best mechanism in a totally decentralized CBDM market. The
total expected utility of the designers by implementing TTC or DA increases
from resource scarce to resource balanced, but after that it depends on the
set of feasible matchings.

In the case of FCFS, the designer utility grows from resource scarce to
resource surplus as the availability of most preferred manufacturers increases
with resource availability. The average designer rank (see Figure 7) of FCFS
on the other hand is better than all other mechanisms. However, this average
is only calculated over the completed matches. In FCFS the number of
completed matchings is arbitrary even for a given instantiation depending
on the order of arrival of service requests. Additionally, FCFS does not
have any of the useful properties listed in Table 2. Therefore FCFS is not a
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Figure 5: Total expected utility attained by manufacturers and designers in resource
balanced case

preferred mechanism in any of the three scenarios discussed.
Munkres offers the highest manufacturer utility regardless of scarcity of

resources. But the average rank attained by the manufacturers is better in
DA and TTC as compared to Munkres. This is because DA and TTC are
based on the ordinal preference ordering whereas Munkres is based on total
cardinal utility attained by the entire set of agents. The difference between
Munkres and TTC, DA is clear particularly in scarce resource settings.

5.3. Evaluation of Matching Mechanisms for the Three Scenarios

Based on critical analysis of the properties of the mechanisms and their
performance under various resource conditions the best mechanisms for the
three scenarios are listed in Table 5. For the monopolistic scenario, the best
mechanism is the one based on the Munkres mechanism. From Figures 4 to
6, it is observed that total expected utility attained by set of manufactur-
ers is maximum for the Munkres mechanism, irrespective of availability of
resources. In monopolistic scenario the company who owns all the resources
is in charge of carrying out the matching process. Monopolist will try to
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Figure 6: Total expected utility attained by manufacturers and designers in resource
surplus case

maximize its utility and hence would resort to the Munkres mechanism.
In two-sided strategic scenario DA is the most suited mechanism in the

case of totally decentralized scenario despite the lower efficiency compared to
TTC. This is because it offers useful properties such as consistency, resource
and population monotonicity, and stability. Balinski and Sonmez [5] show
that if DA is not consistent for a problem, then TTC is not consistent for
it either; the converse is not true. Similarly if DA fails to be stable, TTC
also fails; but the converse is not true. Resource monotone and population
monotone means even if some service providers or service seekers (or both)
leave after the final matching allotments are declared, the solution for the
reduced set of agents remains the same. This is highly possible in totally de-
centralized scenario with independent strategic agent being the stakeholders.
Consistency of the DA mechanism ensures that the most optimal matching
remains unchanged even if some agents leave the system. Resource and pop-
ulation monotone nature of DA ensures fairness even if some service seekers
or providers leave. Finally, there is evidence from real world applications [2]
which shows that stable mechanisms often succeed over unstable ones. Balin-
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Figure 7: Average rank over completed matches attained by manufacturers and designers
in resource balanced case

ski and Sonmez [5] highlight this by stating that if one needs to consider both
stable and optimal solutions then DA ranks ahead of TTC.

Now that we have rated DA over TTC in this scenario, still we need
to choose among the two types of DA (i.e., SODA and PODA). SODA is
strategy-proof with respect to agents in S, i.e., the designers, while PODA
is strategy proof with respect to manufacturers only. Manufacturers have a
higher probability to behave strategically because unlike designers, manufac-
turers can strategize both by capacity manipulation and outside settlement.
Additionally, manufacturers are repeatedly involved and have more learning
effect than designers. Hence we propose the use of PODA over SODA to
make it strategy-proof with respect to the manufacturers. Further, we rule
out FCFS and Munkres in this scenario as it takes care of only one set of
agents and do not offer properties such as stability and consistency, which
are important in a dynamic environment.

In an organizational scenario, we need to enforce a canonical response3 un-

3the response depends only on the individual’s preference characteristics and rules of
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Table 5: Relevant properties and best mechanisms for the three scenarios

Scenario Relevant properties Best mechanism

Totally de-
centralized

Strategy proof, stable, Resource
monotonic, Population monotonic,
consistent, individually rational, bi-
lateral utility

PODA

Monopolistic efficiency, cardinally optimal Munkres

Organizational
group-strategy proof, bilateral util-
ity, efficiency

Top-Trading Cycle

like totally decentralized scenario. For example, students using 3D-printing
resources in a university can group-strategize to gain unfair advantage. There-
fore, in addition to optimizing the preferences of both sets of agents, the
mechanism needs to be group-strategy proof as the system is more prone to
coalition strategies. Therefore, the mechanism based on TTC is best suited
in this scenario.

6. Closing Comments

There is no single best matching mechanism for all scenarios. Depend-
ing on the strategic behavior and resource availability the right mechanism
should be implemented. If the objective is to maximize the utility of a
single monopolistic resource provider then Munkres is the best mechanism.
When the preference ordering of both service seekers and providers need to
be considered TTC and DA perform better. In a totally decentralized sce-
nario, where stable solutions are important, DA is the best mechanism. In
an organizational scenario such as students using 3D printing resources in a
university, TTC is the best mechanism. Table 5 summarizes the general ap-
proach and mechanism for the three scenarios considered in this paper. The
performance of the mechanisms also depends on the availability of resources
which in turn is based on the market thickness. Hence, the insights drawn

the mechanism and is not influenced by strategies and preferences of other agents.
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from the simulations can also be used to choose appropriate mechanism based
on the frequency of matching and the type of the scenario.

There are several mechanism design related issues specific to CBDM for
further investigation. First, the present analysis is based on the assump-
tion that agents are substitutes and not complements. But CBDM is about
integrating collective resources to get the manufacturing task done. Thus,
manufacturing resources may become complements depending on the needs
of the service seeker. Second, resource discovery is a challenging task in
CBDM. It may be impossible for all agents to provide an exhaustive list of
their alternatives. The agents are better off revealing the preference charac-
teristics towards attributes. There is a need to design strategy proof mecha-
nisms when agents reveal attribute preferences instead of alternatives. This
is because many properties of the mechanisms change when preferences are
revealed as attributes and not as alternatives. Third, CBDM involves ex-
change of transferable utility such as money. This assumption has been
relaxed in the analysis. Fourth, the resources may not be perfectly divisible.
For example, in the NRMP application, when medical residents are matched
to hospitals there is a fixed vacancy to be filled. But in CBDM a few re-
source owners may be willing to manufacture the product for pre-determined
amount of time and for the available time the resource can be divided among
multiple service seekers. Thus, the matching problem in CBDM is unique as
compared to the previous applications of the matching mechanisms. These
differences bring in new challenges. As an example, when resources are not
perfect substitutes there will not exist any stable matching.

Acknowledgments

The authors gratefully acknowledge financial support from the US Na-
tional Science Foundation (NSF) through grants 1265622, 1360361 and 1329979.

References

[1] 3Dhubs, 2015. 3Dhubs kernel description. https://www.3dhubs.com/,
accessed: 2015-05-11.
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