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Modeling Effects of Competition on Airlines’ Route-

Selection Decisions 

J D Thekinen1, Kushal Moolchandani2, Jitesh H. Panchal3 and Daniela A. DeLaurentis4 

Purdue University, West Lafayette, Indiana, 47907 

Airlines’ decisions on which routes to operate on depend on a number of factors. This 

paper discusses the effect of competition on such decisions. Most of the related previous work 

assumes that the route decisions are independently made based on the local route level 

characteristics, ignoring broader network properties. In our model, in addition to the effect 

of local route-level parameters, we include the network level significance of the route. 

Particularly we study how the entry or exit decisions made by two major alliances on each 

route are influenced by route-level parameters. Data on past decisions made by the alliances 

within the US air transportation system (ATS) provide inferences on such parameters. 

Because decision on whether or not to operate on a route is a discrete choice, our method is 

based on the discrete games modeling approach. The discrete games model is solved using 

Markov Chain Monte-Carlo (MCMC) approach to study these decisions. First, we solve for 

the preference parameters ignoring competition using discrete choice analysis assuming route 

decisions are independent. The solutions are used as priors in the MCMC technique. We 

introduce a novel likelihood function that considers the network level significance of routes 

when multiple Nash Equilibria exist. Results from our model show good agreement with actual 

data for the year 2014.  

Nomenclature 

A1 =   player 1, Star Alliance 

A2 =   player 2, SkyTeam Alliance  

r =   route  

R  =   total number of routes 

𝑠𝑟
𝑘 =   strategy taken by player Ak on route r 

𝑆(𝑟)          =   (𝑠𝑟
1, 𝑠𝑟

2): strategy profile in route r  

𝑙𝑘 = change in payoff of player Ak by presence of its competitor  

𝑈𝑖𝑗
𝑘 (r) = utility achieved by player Ak on route r when strategy profile 𝑆𝑖𝑗(𝑟) is followed 

𝑉𝑖𝑗
𝑘(r) = observed component of utility 𝑈𝑖𝑗

𝑘   

𝛽𝑘 = preference parameter vector of player Ak  

𝛽 =  (𝛽1, 𝑙1, 𝛽2, 𝑙2) 

𝑎𝑘(𝑟) = airport presence of player 𝐴𝑘 in route 𝑟 

I. Introduction 

 

Airline decisions on route selection depend on several factors such as demand, operating costs, presence of 

competition, etc. Earlier work by the authors [1, 2] modeled such decisions assuming that the entire US air 

transportation system (ATS) is served by a single airline and ignored the effects of competition. This paper extends 

that model to include the effect of competition.  
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Route selection decisions impact the topology of the air transportation network (ATS). This, in turn, affects 

network performance. This is why stakeholders in the ATS have an interest in knowing the airlines’ decision-making 

model so that they can base their own decisions on them. Examples of the other stakeholders who would benefit from 

knowledge of the airlines’ models include the FAA, which would form policies governing airline operations, 

organizations such as NASA, which could use these models when planning future technology development, and even 

competing airlines as they form their own decisions in response to the other airlines’ decisions.  

With this motivation, the authors’ earlier work [1] developed a decision-making model for a US-based airline 

using demand, operating costs, geographic distances between airports, and hub / non-hub nature of airports as the 

inputs variables. While this work modeled demand as a continuously growing input parameter, the following work by 

the authors [2] developed models of passengers’ decision-making. Passengers are also stakeholders in the ATS. They 

make decisions on which airline to fly with, and which one of the available itinerary to choose. Thus, the passengers’  

 

decision-making model was on the decisions on discrete choice between choosing a non-stop, one-stop, or two-stop 

itinerary. This decision model was then integrated with the airlines’ route selection model in a two-level hierarchical 

framework. The relationship between both these models is shown schematically in Fig. 1. 

Figure 1 also shows the scope of the present paper, which is to model the interaction between airlines within the 

ATS. Unlike previous work, this paper does not assume a single airline within the network, and instead models two 

competing airlines alliances based on historical data of the Star Alliance (United Airlines) and SkyTeam (Delta 

Airlines). The decision models of both these airlines are based on the previous work described above. The objective 

of the present work is to model interaction between these airlines as they account for the other’s decisions within their 

own decision to operate or not operate on a given route.  

Section II describes briefly the abstraction employed in this work. Section III gives the technical description of the 

method, specifically the use of Monte Carlo Markov Chains (MCMC) used for the solution of interaction game. This 

is followed by Section IV which presents the results, and Section V which concludes this paper. 

II. Abstraction of the Air Transportation System 

Among many possible abstractions of the US Air Transportation System (ATS), we choose to explore a network 

graph with airports as nodes and routes as links. In particular, we consider a network formed by the top 132 US 

domestic airports sorted based on passenger demand. There is a total of 8646 (𝐶2
132) possible routes among the 

shortlisted airports. We assume that a route exists in a given period for a service provider (heretofore called ‘player’) 

if the player has at least 8 scheduled departures in any two consecutive months of that period. The period is taken as 

Figure 1: Schematic showing airlines' and passengers' decision models and their interaction 
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a year to remove seasonal effects5. Routes operated by each player in a period define the topology of the network, and 

the topology evolves from one period to next based on the routing decisions.  

Such decisions are based on the route characteristics such as passenger demand, marginal cost of adding the route, 

and if any (or both) of the airports that the route connects is a hub. In addition to this, the possibility of entrance on 

the route by a potential competitor also influences the decisions. We consider the competition between two alliances 

viz. Star Alliance (led by United Airlines, UA) and SkyTeam Alliance (led by Delta Airlines, DL).  These alliances 

will be referred to as player A1 (Star) and A2 (SkyTeam) respectively. The words ‘alliance’ and ‘player’ will be used 

interchangeably in the rest of the paper.  

III. Theoretical Approach 

 We model the route entrance decision as a game with complete information played between two alliances. The 

Markov Chain Monte Carlo (MCMC) technique is used to estimate the payoff functions of the airlines. The payoff 

functions thus derived can be used to simulate evolution of US ATS by predicting future routing decisions of the 

airlines using projected market data. 

A. Game Theoretic Modeling 

Our model of airline interaction is based on the work done in Ref. 3; out contributions are described below. On 

every route ‘r’ we model the entrance and exit decisions of each alliance as games with complete information. The 

strategy of each player 𝐴𝑘 in route 𝑟 is either to enter (𝑠𝑘(𝑟) = 0) or not enter (𝑠𝑘(𝑟) = 1). We assume the route 

decisions are independent, i.e., entry and exit decisions for a given route are not influenced by the decisions taken in 

other routes. Hence, the utility attained by entering a route depends only on the route characteristics. Without loss of 

generality, the utility of each player for not entering the route is assigned zero. Utility attained by player 𝐴𝑘 upon 

entering can be written as the sum of observed (𝑉𝑖𝑗
𝑘) and unobserved (𝜀𝑘) components.  The observed component of 

utility consists of route characteristics such as market demand, route length and variation of payoff due to competition. 

The unobserved variables account for all the factors and effects not accounted for in this model or lack of perfect 

information from the perspective of the researcher. However, from the perspective of the players, this is a perfect 

information game. 

 𝑈𝑖𝑗
𝑘 (𝑟) = 𝑉𝑖𝑗

𝑘(𝑟) + 𝜀𝑘(𝑟) (1) 

For the analysis, the observed component 𝑉𝑖𝑗
𝑘 of the utility is divided into two components: a) a component that 

depends on the vector of route characteristics, is represented by the vector �⃗�𝑘(𝑟); b) a component that depends on the 

presence of the competitor. Route characteristics are route market passenger demand and route distance, which in 

route 𝑟 The preferences for the route characteristics �⃗�𝑘(𝑟) are different for different player 𝐴𝑘and is represented by 

preference 𝛽𝑘(𝑟); in this paper we use demand, cost, and airport presence as the route characteristics. The presence 

of the competitor in the route alters this utility for player 𝐴𝑘 by 𝑙𝑘. lk would be positive or negative depending on 

whether the presence is beneficial or harmful. If 𝑠−𝑘 is the strategy adopted by the competitor the observed component 

(𝑉𝑖𝑗
𝑘) for player 𝐴𝑘 can be expressed using the equation: 

 𝑉𝑖𝑗
𝑘(𝑟) = 𝑋𝑘⃗⃗ ⃗⃗ ⃗(𝑟)𝛽𝑘⃗⃗ ⃗⃗ ⃗ + 𝑠−𝑘𝑙𝑘 (2) 

The above game can be summarized using the following payoff matrix tabulated below. In this matrix, each cell 

has two values of payoff, where the first value corresponds to the payoff of the first player and the second value is the 

payoff of the second player. 

 

 

 

 

 

                                                           
5 This is not a weakness of the model. Seasonal effects can be analyzed by reducing the period to quarters and including 

that variable in the model 
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Table 1: Payoff matrix based on entry decision taken by each player 

                                          (Player 2)                 

 

 

(Player 1) 

 Not Operate (𝑠2 = 0) Operate(𝑠2 = 1) 

Not Operate (𝑠1 = 0) 0,0
 

0, 𝑋2⃗⃗ ⃗⃗ ⃗(𝑟)𝛽2⃗⃗ ⃗⃗ ⃗ + 𝜀2 

Operate (𝑠1 = 1) 𝑋1⃗⃗ ⃗⃗ ⃗(𝑟)𝛽1⃗⃗ ⃗⃗⃗ + 𝜀1, 0 𝑋1⃗⃗ ⃗⃗ ⃗(𝑟)𝛽1⃗⃗ ⃗⃗⃗ + 𝑙1 + 𝜀1, 𝑋1⃗⃗ ⃗⃗ ⃗(𝑟)𝛽1⃗⃗ ⃗⃗⃗ + 𝑙2 + 𝜀2 

 

B. Forward model: Nash Equilibria of the game 

The game described in Sec. A is played in every route. Our aim is to estimate 𝛽 assuming that the players play 

rational strategies in each route. The rational strategy for a player is to enter if the player incurs a non-negative utility. 

Thus, the strategy adopted by airline Ak, assuming rational behavior can be expressed as 

𝑠𝑘(𝑟) = {
0 𝑖𝑓 𝑋𝑘⃗⃗ ⃗⃗ ⃗(𝑟)𝛽𝑘⃗⃗ ⃗⃗ ⃗ + 𝑠−𝑘𝑙𝑘 + 𝜀𝑘 ≤ 0

1 𝑖𝑓 𝑋𝑘⃗⃗ ⃗⃗ ⃗(𝑟)𝛽𝑘⃗⃗ ⃗⃗ ⃗ + 𝑠−𝑘𝑙𝑘 + 𝜀𝑘 > 0
  (3) 

The set of rational strategies is the Nash Equilibrium of the game. There are four pure Nash Equilibria strategies 

{I, II, III, IV} corresponding to strategy profile 𝑆(𝑟) = {(0,0), (1,0), (0,1), (1,1)} respectively. The route 

characteristics, �⃗�𝑘(𝑟) and the type of influence the competitor exhibits 𝑙𝑘 > 0 𝑜𝑟 𝑙𝑘 < 0 determine whether the Nash 

Equilibria are non-existent, unique or non-unique. We assume that presence of competitor negatively affects the utility 

for both alliances, i.e., 𝑙1 < 0 𝑎𝑛𝑑 𝑙2 < 0, the Nash Equilibria of the game in each route can be expressed as a function 

of unobserved variables as shown in the Fig. 2.  

 

 

 

   ∈2       

          

             

             

                                                                         

                 ∈1 

`                                  

 

 

 

 

 

 

 

 

Figure 2: Nash Equilibria Regions as functions of unobserved variables assuming 𝑙1 < 0, 𝑙2 < 0 

 

From the figure, we notice that regions I, II, III, IV have unique Nash Equilibria solutions whereas region V has 

multiple equilibria. Ciliberto and Tamer [12] proposed a solution that introduces a new parameter to estimate the 

probability of each of the pure equilibria being played conditional on the equilibrium falling in region V.  However, 

−𝑋⃗⃗⃗⃗⃗⃗⃗1(𝑟)𝛽1 − 𝑙1, −𝑋⃗⃗⃗⃗⃗⃗⃗2(𝑟)𝛽2 − 𝑙2 

−𝑋⃗⃗⃗⃗⃗⃗⃗1(𝑟)𝛽1, −𝑋⃗⃗⃗⃗⃗⃗⃗2(𝑟)𝛽2 

(𝑠1 = 0, 𝑠2 = 1) 

III 

(𝑠1 = 1, 𝑠2 = 1) 

IV 

(𝑠1 = 1, 𝑠2 = 0) 

II 

(𝑠1 = 0, 𝑠2 = 0) 

I 

(𝑠1 = 1, 𝑠2 = 0) & 
(𝑠1 = 0, 𝑠2 = 1)  

V 
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5 

this involves introducing large number of parameters (one for each route) leading to problems such as overfitting and 

poor predictive accuracy. We propose an alternate approach based on a network parameter called airport presence 

[12]. Airport presence of a player is the ratio of number of airports directly operated to by the player to the total 

number of airports directly operated to by all players from that airport. We propose that the probability of the player 

entering the route 𝑝𝑘(𝑟), conditional on the route falling in region V, is a function of average of the airport presence 

𝑎𝑘(𝑟) of the player in the route. Our examination of historic decision indicates that the probability of a player entering 

is a non-linear function of airport presence which drastically changes at around 0.5. Figure 3 shows the entry decision 

of Player 1 as a function of its airport presence in routes where (0,1), (1,0) equilibria were played for the year 2013. 

A logistic functional relation was assumed between the probability of entering of a player and airport presence.  

      𝑝𝑘(𝑟) = (1 + 𝛼1 + 𝛼2𝑎𝑘(𝑟))
−1

        (5) 

 
Figure 3: Entry decision taken by Star Alliance as a function of it airport presence in routes where (0,1) or 

(1,0) Nash Equilibria was played in 2013 

C. Bayesian model for predicting the parameters 

 

The parameters of the function in Equation 5 are obtained using the MCMC algorithm.  

This subsection describes how a numerical procedure using Monte Carlo Markov Chain approach to obtain the 

parameters of the Game Theoretic model. The objective is to draw inferences on the parameters in game model 𝛽 

1. Prior 

For each decision parameter of player 𝑘 in 𝛽𝑘 a normal prior is assigned, the parameters of which are obtained by 

running the discrete choice analysis [1]. For the parameter 𝑙𝑘 a normal prior is assigned truncated in the 

region (−∞, 0), since we assume that presence of the competitor reduces the utility for both the players. 𝛼1, 𝛼2 is 

given a normal prior. 

 𝛼1~𝑁(𝜇𝛼1
, 𝜎𝛼1

), 𝛼2~𝑁(𝜇𝛼2
, 𝜎𝛼2

): The parameters 𝜇𝛼1
, 𝜎𝛼1

, 𝜇𝛼2
, 𝜎𝛼2

 are obtained by fitting a logistic curve 

between airport presence and entry decision of player 1 in all routes where (0,1), (1,0) equilibria was played. Now all 

routes where (0,1), (1,0) equilirbia was played do not lie in region V. However, the prior is a first approximation for 

the coefficients and hence it’s a reasonable assumption to use that for obtaining the parameters of the prior. 

 

2. Likelihood 

Assuming that the unobserved variables are independent and have a standard normal distribution, the likelihood 

of each of the strategy profile regions in Figure 2 can be expressed as  

𝐿1(𝛽,⃗⃗⃗⃗ 𝑋𝑟
⃗⃗⃗⃗⃗) = 𝜙 (−𝑋𝑟

1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗) 𝜙 (−𝑋𝑟
2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗)  (6) 
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𝐿2(𝛽,⃗⃗⃗⃗ 𝑋𝑟
⃗⃗⃗⃗⃗) = {𝜙 (𝑋𝑟

1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗) − 𝜙 (𝑋𝑟
1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗ +  𝑙1)} 𝜙 (−𝑋𝑟

2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗) +  𝜙 (𝑋𝑟
1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗ +  𝑙1) 𝜙 (−𝑋𝑟

2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗ − 𝑙2) (7) 

𝐿3(𝛽,⃗⃗⃗⃗ 𝑋𝑟
⃗⃗⃗⃗⃗) = {𝜙 (𝑋𝑟

1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗) − 𝜙 (𝑋𝑟
1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗ +  𝑙1)} 𝜙 (𝑋𝑟

2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗ +  𝑙2) +  𝜙 (𝑋𝑟
1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗) 𝜙 (𝑋𝑟

2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗) (8) 

𝐿4(𝛽,⃗⃗⃗⃗ 𝑋𝑟
⃗⃗⃗⃗⃗) = 𝜙 (𝑋𝑟

1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗ +  𝑙1) 𝜙 (𝑋𝑟
2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗ +  𝑙2)  (9) 

𝐿5(𝛽,⃗⃗⃗⃗ 𝑋𝑟
⃗⃗⃗⃗⃗) = {𝜙 (𝑋𝑟

1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗) − 𝜙 (𝑋𝑟
1⃗⃗ ⃗⃗ ⃗ 𝛽1⃗⃗ ⃗⃗⃗ +  𝑙1)} {𝜙 (𝑋𝑟

2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗) − 𝜙 (𝑋𝑟
2⃗⃗ ⃗⃗ ⃗ 𝛽2⃗⃗ ⃗⃗ ⃗ +  𝑙2)} (10) 

 

where ϕ is cumulative density of standard normal distribution. Now the likelihood function assuming that routes 

are independent is given by  

 𝐿(�⃗�, 𝑆 ∕ 𝛽, �⃗�) = ∏ [{(𝐿1)𝐼[𝑆𝑟=1](𝐿2 + 𝜆𝑟𝐿5)𝐼[𝑆𝑟=2](𝐿2 + 𝐿5 − 𝜆𝑟𝐿5)𝐼[𝑆𝑟=3](𝐿4)𝐼[𝑆𝑟=4]} {
1

1+𝑒𝛼1+𝛼2𝑎𝑟
1}

𝐼[𝑆𝑟=2 𝑜𝑟 3]

]𝑅
𝑟=1  

Where 𝜆𝑟 is a Bernoulli variable that assumes 1 when (1,0) equilibria played and 0 when (0,1) plays (11) 

3. Posterior 

Now a joint posterior density function for the parameters �⃗�, 𝛽 can be obtained applying Bayes Rule as 

𝑌(𝛽, �⃗� �⃗�⁄ , 𝑆) ∝  𝜋(�⃗�)𝜋(𝛽)𝐿(�⃗�, 𝑆 𝛽⁄ , �⃗�) 

 

𝑌(𝛽, �⃗� �⃗�⁄ , 𝑆) ∝  (𝑒
−�⃗⃗⃗�𝑇�⃗⃗⃗�

2 ) (𝑒
−𝛽1⃗⃗⃗⃗⃗⃗⃗

𝑇
𝛽1⃗⃗⃗⃗⃗⃗⃗−𝛽2⃗⃗⃗⃗⃗⃗⃗

𝑇
𝛽2⃗⃗⃗⃗⃗⃗⃗

2 ) 𝜋(𝑙1)𝜋(𝑙2)𝐿(�⃗�, 𝑆 𝛽⁄ , �⃗�) (12) 

D. MCMC algorithm 

 

The following steps are followed to estimate the posterior distribution.  

 

1. Initialize �⃗�, 𝛽 using the prior  

2.  For each route, obtain 𝜆𝑟~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑝𝑟), where 𝑝𝑟 = (1 + 𝛼1 + 𝛼2𝑎𝑟
1)−1 

      3. Metropolis-Hastings (MH) algorithm to update the parameters �⃗� = (�⃗�, 𝛽),  𝜆 = {𝜆1, 𝜆2, … , 𝜆𝑅}. In the MH 

algorithm the using the prior distribution as jump function; new sample is accepted as,  

{
𝑖𝑓 𝑐 ≥ 1, �⃗�𝑛𝑒𝑤  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑                                      

𝑖𝑓 𝑐 < 1, �⃗�𝑛𝑒𝑤  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐 
, where 𝑐 =

𝑌(�⃗⃗⃗�𝑛𝑒𝑤,�⃗⃑⃗�|𝑆)

𝑌(�⃗⃗⃗�𝑜𝑙𝑑,�⃗⃑⃗�,|𝑆)
×

𝐽(�⃗⃗⃗�𝑜𝑙𝑑|�⃗⃗⃗�𝑛𝑒𝑤)

𝐽(�⃗⃗⃗�𝑛𝑒𝑤|�⃗⃗⃗�𝑜𝑙𝑑)
 

 

IV. Results 

In our previous work [1], we ran the model of airlines’ decision-making without accounting for competition 

between alliances. The mean preference parameters for cost, demand and distance were obtained as -7.008 and 0.133 

and -0.067 respectively. The negative sign indicates that as distance between routes increases the probability of the 

route getting added decreases, whereas it is positive proportional to increase in demand. These values serve as 

parameters for prior distribution for each of distance, demand and cost.  

The model was run for a network consisting of 74 routes in the year 2013. Upon implementing the MH algorithm 

for the network posterior distribution on each of the parameters were obtained as shown in Figure 4.  
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Figure 4: Posterior samples of the preference parameters for cost, demand and distance  

 

Figure 5 shows the posterior samples of demand, distance and cost preference parameter for each of the players 

after providing a burn-in period of 20000 

  

 

 
 

Figure 5: Posterior samples for the preference parameters after burn-in period 

 

  

 

The results for the interaction factor (which shows the effect of the entrance of the competitor on the utility for 

each players) are shown in Figure 6. 
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Figure 6: Posterior samples for the interaction parameters of each player 

 

The final decision model for both the players after implementing the game theoretic model is described by the 

values of the preference parameters. This is summarized in Table 2. Preference for distance parameter was negligible 

while taking the decision (as observed from its low magnitude of posterior). Cost preference parameter had a negative 

magnitude while demand had positive magnitude, indicating that higher the demand and lower the cost more preferred 

the route is to operate. Cost preference parameter had a much higher magnitude than all other decision parameter 

indicating cost is the most significant decision variable of the three. Further Star had a larger decline in payoff from 

the presence of the competitor as compared to SkyTeam.  

 

Table 2: Statistics of the posterior estimates on decision parameters after burn-in period 

Parameter Prior mean Posterior mean Posterior standard dev 

Cost(Star) 𝛽1
1 -7.008 -6.851 0.012 

Demand(Star) 𝛽2
1 0.133 0.281 0.010 

Cost(SkyTeam) 𝛽1
2 -7.008 -6.880 0.013 

Demand(SkyTeam) 𝛽2
2 0.133 0.300 0.011 

Interaction(Star) 𝑙1  -100 -4.530 0.010 

Interaction(SkyTeam) 𝑙2  -100 -3.251 0.077 

𝛼1  -21 -29.910 0.495 

𝛼2  49 42.322 0.669 

 

 

 Using the mean posterior estimates for coefficient on airport presence, conditional on region V – the probability 

of Star Alliance entering as predicted by the model, a function of its airport presence is plotted in Figure 7. 
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Figure 7: Entry decision of Star Alliance as a function of airport presence conditional on Region V 

 

  

 Now based on the estimates of preference parameters the routes can be partitioned based on the Nash Equilibrium 

zone it falls. The partitioning as predicted by the model is compared with actual Nash Equilibrium in the Table 3. 

 

Table 3: Tabulating the partitioning of the routes based on the Nah Equilibria played and Region it falls in 

Nash Equilibrium No. of routes (actual) Region No. of routes (model) 

(0,0) 0 I 1 

(1,0) 61 II 48 

(0,1) 2 III 3 

(1,1) 11 IV 5 

  V 17 

 

 Using the information the model was used to predict the Nash Equilibrium to which the route falls in based on 

route characteristics such as demand, cost, and airport presence. The prediction of the model is compared to the data 

as shown in the bar chart (Figure 8). 

 
Figure 8: Verification: Predicted Nash Equilibria against actual Nash Equilibria strategy 
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From figure 8, we observe good comparison of model classification of equilibria with observed equilibria for the 

same year. Thus the proposed model can capture the decision model of the airlines using much fewer number of 

parameters. This gives advantages such as better prediction accuracy and no overfitting.  

Following this, our future plans include testing for different implementations of the MH algorithm using various 

priors, jump function and in addition to integrate this model within the hierarchical decision-model of airlines and 

passengers.  

V. Conclusion and Ongoing Work 

Based on the game theoretic model developed preference parameters of each player (airlines) for each of the 

decision parameter such as distance, cost and demand was obtained. It was observed that cost was the most important 

decision variable for both the players. The model also showed that Star Alliance had a higher disutility in the presence 

of its competitor as compared to SkyTeam.  

The present results are shown for an assumed prior. The process will be repeated for different priors to study if 

improvement in accuracy is achieved by changing priors. The accuracy so obtained will be compared with the earlier 

ones achieved by discrete choice analysis ignoring competition. Interaction of airline competition factor with other 

decision variables such as market demand, cost etc. will be studied. Overall, the work will significantly contribute to 

gaining better insights on airline decision prediction and strategic analysis from limited available data. This work will 

also be integrated into the hierarchical decision-making model shown in Fig. 1. Once two airline alliances with 

separate decision models are developed, the passengers will then have to make decision on which one to fly with, and 

this would be developed to be integrated in the hierarchical decision model. 

Among the three decision variables viz. distance, demand and cost – only cost is under the control of policy makers 

such as FAA. It is encouraging to note from the results that cost is the most significant among the three in the decision 

making process of the airlines. Hence the inferences gained from these model can be used by such federal agencies to 

study the impact of various policies or US ATS topology and can guide the policy makers to frame policies. In future, 

such policy experiments will be conducted to provide valuable recommendations for FAA.   
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