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ABSTRACT 

With the increasing availability of mid-to-low price 

3D printers, it is increasingly possible for individuals 

and medium-sized enterprises to own such machines. 

However, such owners rarely utilize the full capacity 

of these machines. The excess capacity can be made 

available to interested designers who would like to 

get their designs printed, but do not own the 

machines. This has resulted in an emergence of 

online portals, where machine owners can register 

and advertise their printing resources, and designers 

can avail these resources to choose the machine that 

best suits their design. Presently a first-come-first-

serve approach is used to match the designers with 

machine owners. The primary limitations of this 

approach are that (a) the capacity of the machines is 

highly under-utilized and (b) the matching is based 

solely on the designers’ preferences while ignoring 

the machine owners’ preferences. To address these 

limitations, we propose the use of Gale-Shapley 

matching algorithm after applying the utility theory 

to obtain the designer and manufacturer preferences 

for one another. The use of Gale-Shapley matching 

algorithm is evaluated and compared with the first-

come-first-serve approach. The results of the study 

indicate that the approach based on Gale-Shapley 

matching improves the total social welfare over the 

present first-come-first-serve approach. While this 

method is slightly biased in favor of either the 

designers or the machine owners, given the 

limitations of the algorithm, both sides have 

improved utility and get matched to a design or 

machine high in their preference ordering. 
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1. INTRODUCTION 

Recent developments in additive manufacturing have 

placed the manufacturing industry on the brink of a 

revolution. In the 2013 State of the Union address, 

US president Barack Obama publicly endorsed the 

3D printing technology as a transformation that can 

change the very face of the manufacturing industry 

[1].  

3D printing is expected to usher in the third 

Industrial Revolution. It offers high flexibility in the 

design of products. Manufacturing can now take 

place in the same country where products are 

consumed, eradicating the need to rely on 

intermediate manufacturing platforms [2]. Design 

files can now be sent and manufactured anywhere in 

the world [2]. It offers the ability to manufacture 

different products without the need for costly 

retooling [3]. 

Many more advantages of 3D printing exist, however 

this paper focuses on the advantages that are 

catalyzing the decentralization in manufacturing. 

Every day, designers are gaining access to 3D 

printing technologies more easily as 3D printers 

become cheaper and the applications of the 

technology expands. Up until recently, their 

applications were limited to creating prototypes for 

aerospace, defense and automotive companies before 

embarking on more expensive ventures [4]. Filton [5] 

quantifies this claim by stating that more than 20% of 

the models printed using these machines are now 

final products rather than prototypes and this number 

is expected to rise to 50% by 2020.  Due to the 

growth in the size of this industry, there is a need for 

a central system to facilitate the interaction between 

agents such as designers and manufacturers. Such a 

system must be robust and immune to the 

manipulations and strategic behavior by self-

interested interacting agents.  
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Additive manufacturing has helped bridge the gap 

between designers and manufacturers by enabling 

rapid transition of concepts into physical prototypes 

and final products. One way in which companies are 

able to bridge this gap is by producing affordable 3D 

printers that designers can use to print and market 

their own products. MakerBot [6] and 3D Systems 

[7] are examples of two such companies. Another 

reason for this change is that now designers have 

access to robust 3D modeling software such as 

Solidworks [8] and CATIA [9] which allow them to 

create and edit 3D models supported by several types 

of 3D printing processes. 

To serve the designers for whom it is economically 

not viable to own different printers for their needs, 

there has been an emergence of centralized service 

organizations, such as Shapeways [10], who own a 

variety of 3D printers. Designers can submit 

geometric models and get them printed. These 

companies typically also offer quality checks and 

assistance to designers to help them market and sell 

their products in return for a commission to the 

company. Moreover, companies such as Shapeways 

and iMaterialise [11] also provide avenues for people 

with ideas to connect with professional designers 

who can help them develop their designs [12]. 

In addition, an alternate, decentralized scenario exists 

where designers who do not possess the necessary 

resources to make physical prototypes of their 

designs are able to connect with individual agents 

who do own those resources. These interactions are 

facilitated by service organizations such as 3DHubs 

[13], where designers upload their 3D models to an 

online platform and are able to pick a machine that 

they would like to get their part printed from. The 

machine owners complete these 3D printing tasks for 

a price decided based on the requirements of the 

designers for their submitted designs. The machines 

range from desktop printers to industrial level 3D 

printers, giving designers a myriad of options to 

choose from based on their needs. 

Given the immense boom in 3D printing services that 

are increasingly decentralizing the design process, 

there exists a need for a framework that can 

accommodate the preferences of all interacting 

participants in these services while efficiently 

allocating 3D printing tasks. So far this problem was 

approached on a First-Come-First-Serve (FCFS) 

basis. Though inefficient, FCFS became popular 

primarily due to its simplicity. Hence we address the 

research question, “How can the matching in 

decentralized design and manufacturing be improved 

over the present First-Come-First-Serve (FCFS) 

approach?” The central hypothesis is that Gale-

Shapley (GS) based matching offers improvement 

over the FCFS approach with regards to utility 

gained by both designers and manufacturers in a 

decentralized design and manufacturing framework. 

Matching entities in a bipartite setting is a well-

studied topic and several algorithms have been 

developed. These algorithms have been broadly 

developed for three scenarios – (a) neither set of 

agents consists of decision makers, (b) only one set 

of agents make decisions, and (c) both sets of agents 

make decisions. Decentralized design and 

manufacturing falls in the third category where both 

designers and manufacturers are utility maximizing 

agents. An appropriate algorithm in this setting 

should be able to consider the designer and 

manufacturer utilities simultaneously, and should 

also be immune to their strategic behavior. For 

example, if the Hungarian Generalized Assignment 

algorithm [14] is used to allocate the manufacturing 

resources to designers then it may fail to satisfy both 

the manufacturers and the designers simultaneously.  

Gale-Shapley is a classic algorithm that has been 

used for bipartite matching in the last 50 years in 

applications such as matching students to colleges, 

medical residents to hospitals. Hence, we propose a 

systematic approach using Gale-Shapley deferred 

acceptance algorithm [15] to efficiently handle this 

decentralized setting. 

2. SOLUTION METHODOLOGY 

2.1. Problem Formulation 

This paper focuses only on the decentralized 

scenario. This scenario can be generalized as a set of 

m service seekers,  1 2, ... mD d d d  and a set of n

service providers,  1 2, ... nS s s s  independently 

trying to maximize their individual payoffs. The 

service seekers and service providers will be 

collectively referred to as agents, denoted by set

 ,A D S . All agents of set S  are alternatives for 

agents in set D  and vice-versa.  

Associated with each agent is an exhaustive
1
 list of 

strictly ordered preference ordering for each 

alternative of the opposite set. The preference 

                                                           
1
 Exhaustive means the preference list should contain all 

the members of the opposite side. 
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ordering for an agent is generated by utilizing utility-

based decision theory. The agents reveal information 

about their characteristic attributes which are usually 

probability distributions over the possible values that 

the attributes can take.  All agents of the set D value 

certain set of attributes of their alternatives in set S , 

which are called the ‘service provider attributes’, and 

are denoted as  1 2,   xSA SA SA SA  . Similarly, 

agents of S  value ‘service seeker attributes’ viz.

 1 2,   yDA DA DA DA  .  

While generating the preference ordering for 

alternatives in S , 
id s are the decision makers and 

they reveal their qualitative preference characteristics 

for each attribute in the set SA . They also specify 

their significance level of each attribute, which 

defines how important the attribute is to the decision 

maker in question, and is quantified as the weight for 

that attribute. Based on the qualitative preferences to 

attributes, probability distribution of attributes, 

significance level of attributes and dependency 

among attributes, multi-attribute expected utility is 

calculated for each alternative 
is  by each service 

seeker
jd , denoted by  ,dEU i j . This is further 

repeated by each
is as a decision maker. Similarly, 

expected utility is calculated for alternative 
id by 

service provider
js , denoted by  ,sEU i j . The 

preference ordering of each agent is generated based 

on the notion that the higher the expected utility is, 

the higher its rank is in the preference list.   

A matching M  is a one-to-one correspondence 

between the elements of sets D and S . If designer d  

and service provider s  are matched in M , we call the 

ordered pair  ,d s  a matching pair and we set 

 Ms p d , i.e., s  is the matching partner of d under 

M  or if vice-versa, we can set  Md p s . If  M ip d

is the thr element in order in the preference ordering 

of 
id then the rank of d in M is

dir . The average rank 

of D  is defined as 
dii

D

r
r

m



and the average rank of 

S is defined as 
sii

S

r
r

m



. 

In the following, we define optimality and stability – 

two key properties of a matching M . 

 

Optimality: A matching M is said to be optimal if 

the weighted average of 
Dr and 

Sr is as low as 

possible. M  is said to be D optimal if 
Dr  is 

significantly lower than 
Sr and is said to be biased in 

favor of D . Similarly, S  optimality and bias in 

favor of S is defined. An alternate definition of 

optimality [16] is in terms of the average expected 

utility of each set i.e.,
Dr and 

Sr are replaced by 
DEU

and 
SEU respectively; with

  ,d M ii

D

EU i p d
EU

m



and
  ,s M ii

M

EU i p s
EU

m



with the exception that 

here a higher average expected utility suggests 

greater optimality. Both these definitions are 

identical when the agents truthfully reveal their 

preferences. If the matching M  incentivizes falsified 

preference revelation, then higher rank does not 

imply higher expected utility. 

Stability: M  is said to be a stable matching if there 

are no blocking pairs. A designer d and service 

provider s  are said to be a blocking pair if the 

following conditions hold true: (i) d and s are not 

partners in M ; (ii) d prefers s to  Mp d and s  

prefers d  to  Mp s . An alternate definition of stable 

matching is that it is a matching with ‘justified envy’ 

i.e., even though an agent x  envies an alternative y

different from his partner in M , y  will not prefer x  

to his partner in M and hence both y and x  will not 

break out of M  [16]. Thus, all agents matched 

through M will submit to the matching mechanism if 

M  is a stable-matching mechanism. 

The objective is to achieve the right tradeoff between 

stability and optimality. Maintaining stability is 

important in a decentralized setting else the agents 

will resort to strategic behavior such as providing 

falsified preference ordering, forming coalition 

strategies and ties outside the centralized platform. 

This indirectly deteriorates the matching efficiency 

and may lead to unfair outcomes [16]. At the same 

time, ensuring stability in the final matched outcome 

comes at the cost of optimality.  

We model this decentralized setting as a matching 

problem ensuring maximum optimality without 

compromising on stability. The agents submit their 

preference characteristics and the central platform 

performs the matching.  
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2.2. Proposed Approach to Applying 
Matching in Decentralized Design 
and Manufacturing Settings 

Figure 1 summarizes the steps adopted in solving the 

problem. These steps are discussed next. 

Phase 1: Data Collection 

This phase begins with collecting data of the service 

providers, D and service seekers, S . For example, 

m  independent designers form the set D ; while n  

independent machine-owners form the set S . Each 

designer submits a design along with his/her 

preferences for machine attributes, SA , such as 

resolution, material characteristics, size 

requirements. Each machine-owner submits his/her 

preferences for design attributes, DA , such as 

resolution requirements, complexity, urgency, etc. 

We assume that information about attributes of all 

agents in D and S  viz. DA and SA  is common 

knowledge. These attributes are of three types: (a) 

unique to 
id D , (b) unique to

is S , and (c) unique 

to each service provider-seeker ordered pair

,i ja D S  . The amount of time required for each 

design is unique to each designer-machine pair and 

would fall in category c , whereas other distinct 

machine characteristics such as resolution 

capabilities belong to category b . 
 

Phase 2: Utility-Based Preference Ordering 

In this phase, we mathematically formulate the 

attribute preferences using expected utilities of each 

agent for each alternative. These expected utilities 

are in turn used to calculate the 

strict preference ordering that serves 

as the input for the matching 

process. In order to calculate the 

expected utilities the following steps 

are followed: 

Step 1: Attribute Probability 

Distributions and Utility Functions 

The first step is to define the 

probability distributions for each 

attribute. This is done based on the 

information provided by the set of 

agents, A . For example, consider 

the tensile strength (TS) of the 

material as an attribute of the 

service seeker. Based on 

experiments and historical data the 

variability in TS is quantified as a 

probability distribution over a range of values it 

assumes.  

Next, utility functions of the agents towards the 

attributes characterizing their alternatives are 

defined. The evaluation of these utility functions is 

carried out using the lottery-question approach, as 

illustrated for 3D printing by Fernandez et al. [17]. 

Step 2: Attribute Weights and Dependencies 

Attribute weights and dependencies are important to 

obtain the multi-attribute utility function. Ideally, 

considering the generalized case of dependency and 

tradeoffs between attributes, the multi-attribute utility 

function 
iu  for agent 

id  in D  is 

     1 1 1  , ,  , , i x x xu SA SA f f SA f SA     for

  1, ,i m  . Similarly, utility function
ju  for agent 

js  

in S is      1 1 1   , ,  , , j y x yu DA DA f f DA f DA   
 

for 

  1,...,i n . The above equation can be simplified by 

applying certain independence assumptions in 

designer preferences. These assumptions are 

established based on: 

1. Additive independence of attributes: There are 

two independence conditions viz. utility 

independence and additive independence. The 

methods for defining and testing the same are 

detailed by Keeney and Raiffa [18] and Thurston 

[19]. 

2. Evaluating the scaling constants: The scaling 

constants define the significance of the attribute 

for the agent. 

 

 

Figure 1Flowchart of the proposed approach 

 

Expected Utility 

Calculations

Attribute Weights 

and Dependency

Attribute 

Probability 

Distributions

Attribute Utility 

Functions

Attribute 
Requirements

Machine 
Specifications

Manufacturer 

Data

Machine 
Requirements

Design 
Properties

Designer Data

PHASE 1

Data Collection 

and Attribute 

Quantification

PHASE 2

Utility Based 

Preference 

Ordering

PHASE 3

Gale Shapley 

Implementation 

and Evaluation

2.2

2.3

Preference 

Ordering

2.1

Gain 
Probability

Algorithm 

Implementation

Social Utility

Biasness3.1 3.2



 

MATCHING DESIGNERS AND 3D PRINTING SERVICE PROVIDERS USING GALE-SHAPLEY 

ALGORITHM 
 5 

 

Step 3: Expected Utility Calculations and Preference 

Ordering 

The single-attribute utilities of the agents, along with 

the probability distribution for each attribute, and 

scaling constants are combined to generate the 

overall expected utilities that each agent has for each 

of the alternatives. The alternatives are then ranked 

by each agent based on decreasing order of their 

expected utilities. Thus, a preference ordering of each 

agent is generated. For example, if an agent in D has 

preferences ordering for every alternative in set S. 

This preference list is exhaustive and strict in 

ordering (no ties are allowed). 

Phase 3: Matching Algorithm Implementation 

and Analysis 

Once the preference ordering is generated for each 

agent, we choose an appropriate matching algorithm. 

Examples of matching algorithms include Gale-

Shapley deferred acceptance algorithm [15], and 

Top-Trading Cycle algorithm [20]. The average 

expected utility and rank achieved by each agent are 

then evaluated to analyze the performance of the 

algorithm. The goals in matching are to maximize the 

average expected utility (and rank), and to minimize 

the bias ensuring stability. 

2.3. An Illustrative Example 

Consider an illustrative setting were 10 designers are 

trying to get their designs printed through 10 

machine-owners ( 10m n  ). The details of the 

designs are provided in Table A1. The designers base 

their preferences for machines on three machine-

owner attributes viz. resolution ( 1SA ), tensile stress (

2SA ) and size (
3SA ). Machine-owners choose the 

design based on three design-attributes: printing time 

( 1DA ), build area consumed ( 2DA ), and resolution (

3DA ). 

 

Figure 2 Designer and manufacturer matching scenario 

with attributes 

In Figure 2, each block shows the attributes 

corresponding to that agent. The qualitative 

preferences of the agents towards the attributes are 

indicated in parentheses. The preferences of each 

agent are independent of the preferences of other 

agents. In the rest of this section, we illustrate the 

application of the proposed approach for this 

example. 

Phase 1: Data Collection 

Ten designs from ‘Thingiverse’ [21], each with a 

different volume and base area are downloaded (see 

Table A1). Five different machines are chosen. The 

printing time of each design in all the five machines 

is calculated using appropriate software for each 

machine. Among the five machines chosen there are 

three Fusion Deposition Modeling (FDM) machines 

and two Stereolithography (SLA) machines. Sets of 

FDM and SLA materials are selected and their 

material properties are obtained from ‘Materialise’ 

[22]. The machine type and the material sets are then 

permuted
2
 to obtain ten unique machine owners (see 

Table A2) who form members of the set S .  

Designer Preferences 

The designers’ preferences are based on the machine-

owner attributes. The first machine-owner attribute (

1SA ) is resolution. This is an important attribute 

because the quality, detail capability, finish and 

accuracy of the final printed part depend on
1SA . 

Designers are given the option to choose either a low, 

medium or high resolution. The resolution 

capabilities of the five machines short-listed vary 

from 100 microns to 5 microns. This range is 

segregated into high, medium and low resolution 

regimes (see Table A3). Their individual utility 

functions are then formulated based on the category 

they fall into. 

2SA  is tensile strength (TS). Based on the desired 

application, the designer may prefer a material with 

low, medium or high TS. Material data, collected 

from the Materialise website [22] for different FDM 

and SLA materials show that TS ranges from 22 MPa 

to 72 MPa for the chosen materials. TS is divided 

into low, medium and high regimes. 

3SA  (size) is a mandatory requirement because 

violating these restraints make printing infeasible
3
. If 

size of the design is beyond the capacity of the 

                                                           
2
It was assumed that the FDM materials could be used 

only in a FDM machine, and similarly for SLA. 
3
 It is assumed that the products are printed as a single 

piece without assembling and hence the size of the design 

must be within the capacity of the machine, else the part 

cannot be printed. 
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machine then the expected utility for the designer to 

get matched with the machine-owner in consideration 

is zero
4
.  

Manufacturer Preferences 

The machine-owner preferences are based on the 

designer attributes such as printing time, resolution, 

geometric properties. 

1DA (resolution), is important to the machine-owner 

due to two major reasons: 

1) Economic reason: the machine-owners prefer to 

fully utilize their resolution capabilities, e.g., 

consider a high end machine that can print 

resolution as low as 5 microns – the machine-

owner prefers to print a high resolution product. 

2) Strategic reason: machine-owner may prefer to 

print other products in the same run and would 

consider a particular resolution range as an ideal 

match. In this illustrative scenario, the strategic 

reason is ignored as it is one-to-one matching 

and machine-owner utility is quantified such that 

the higher the resolution capacity utilized, the 

higher the utility. 

2DA (size) is quantified based on the percentage of 

the machine build area consumed. This is unique to 

each design-machine pair. Due to economic reasons, 

suggested earlier for resolution, it is assumed that 

machine-owners have higher utility for higher 

percentage area consumption. This may not always 

be true. For example, a reduced print area means 

several products can be printed in the same job thus 

saving up on set-up time and improving overall 

efficiency. Such concerns can be modeled by re-

defining the utility function. The proposed solution is 

still valid. 

3DA  (printing time) is also unique for each 

machine-design pair because it depends on the 

complexity of the design and type of printer 

employed to perform the task
5
. In this analysis, 

setting up and post-processing time are excluded 

while calculating 3DA .  

                                                           
4
Only designs that satisfy the mandatory attributes in all 

ten manufacturers are selected. This was done to ensure 

that the preference list was exhaustive. 
5
The actual time may also depend on the resolution 

requirement of the designer rendering dependency 

between two attributes. For simplicity, it is assumed that 

all the attributes are independent of one another. Such 

concerns can be addressed in the utility calculation and do 

not lie within the primary objectives of the paper. 

Phase 2: Utility Based Preference Ordering 

Step1: Attribute Probability Distributions and 

Attribute Utility Functions 

The simplest case of a uniform probability 

distribution between identified upper and lower 

bounds for each attribute is assumed. Then, the utility 

function for each designer and manufacturer attribute 

is defined. For brevity, only 
1SA is discussed. Similar 

procedures are followed for other attributes and the 

numerical results are briefed in Table A3 in the 

Appendix. As mentioned earlier, there are high, 

medium and low resolution requirements. The 

designer who prefers high resolution has a maximum 

utility (=1) for 5 microns, minimum utility (=0) for 

22 microns and 0.6 utility
6
 for 13.5 (mean of 5 and 

22). A second-order polynomial fitting the above 

three points is used to generate the utility function. 

The utility is 0 for all values of 1SA above 22 microns 

and below 5 microns. For designers who prefer 

medium resolution there is an ideal intermediate 

resolution, above and below which utility drops from 

the optimal value (=1) to zero at both lower 

unacceptable and upper unacceptable values. Two 

polynomials are used to define the left and right 

hand-side utility. Low resolution is similar to high 

resolution, except that 300 microns has utility 1 and 

90 microns has utility 0.  

Step 2: Attribute Weights and Dependency 

Additive independence of attributes: For this 

example, multi-utility independence and the additive 

independence property are assumed. Hence

 ,

1

x

i ij i j j

j

DU k du SA


 is the multi-attribute utility 

function of designer id ; and  ,

1

 
y

i ij i j j

j

SU k su DA


 is 

the multi-attribute utility function of machine-owner

is . 

Evaluation of scaling constants: The scaling constant 

for each attribute is quantified on a scale from 1 to 5 

based on how significant that attribute is to the agent. 

For example, the agents assign a scale 5 to those 

attributes that are mandatory and a scale 1 to those 

that are least significant. These scales are then 

normalized to unity.  

                                                           
6
Now 0.6 was chosen to account for the risk-averse nature 

of the designer. All agents are assumed to be risk-averse in 

this analysis. 
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Step 3: Expected Utility Calculations and Preference 

Ordering 

The single-attribute utilities of the designers, along 

with the probability distributions for each attribute 

and the attribute weights (k-values) are combined to 

generate the total expected utilities that each agent 

has for every alternative in the opposite set.  

   
,

,

, , ,

1

l j

l j

sub
x

i j i l i l l j l

l slb

DEU k du SA dp SA dy


  is the expected 

utility of the thi designer for thj machine-owner. 

   
,

,

, , ,

1

l j

l j

duby

i j i l i l l j l

l dlb

SEU k su DA sp DA dy


  isthe expected 

utility of the thi machine-owner for thj designer. 

Here,  j ldp SA is the probability distribution of 

attribute 
lSA for alternative j . 

jsp is same for attribute

jDA . 
,i jsub and

,i jslb are the upper and lower bounds 

respectively for attribute l  of machine-owner j . 

,i jdub and
,i jdlb are the upper and lower bounds 

respectively for attribute l  of designer j . 

The preference ordering of each agent is generated 

based on the rationale that the higher the expected 

utility for an alternative to an agent then the higher is 

the rank of the alternative. The preference orderings 

thus generated are inputs to the Gale-Shapley 

deferred acceptance matching algorithm. 

Phase 3: Gale-Shapley deferred acceptance 

algorithm implementation 

The Gale-Shapley algorithm (as described in [15]) is 

implemented with designers as proposers: 

 Initiation: The status of each agent is set to be 

“unmatched”. 

 Loop: 

o While a designer
id is unmatched  

 Select the first machine-owner 
js on id ’s 

list to whom im has not yet proposed
7
 

 If 
js is free or 

js prefers 
id to her currently 

matched designer then assign id to
js ; else 

js rejects id and id status continues to be 

unmatched 

o Repeat the above step for every unmatched 

designer id  

                                                           
7
 In this paper, m are designers, considered to be the 

dominant side, and w are the machine owners. 

 Terminate when all designers are either matched 

or run out of choices. 

3. RESULTS 

The solutions obtained from this algorithm are biased 

to the proposing side (the designers in this case). 

Hence, the solution lacks fairness in that it optimizes 

the preference structure of one side as compared to 

the other. Nevertheless, the solutions obtained are 

strategy-proof and stable. More importantly, the 

solution Pareto dominates any other matching 

mechanism that produces stable outcome. However, 

stability comes at the cost of optimality. Despite this 

compromise on optimality we show that the proposed 

approach offers significant improvement upon the 

currently used first-come-first-serve approach.  

The section is structured as follows. For a given 

preference ordering and expected utility for each 

designer and manufacturer, the optimality offered by 

Gale-Shapley algorithm is first compared with first-

come-first-serve in Section 3.1. In Section 3.2, the 

same analysis is repeated for several such 

combinations of preference ordering. 

3.1. First-Come-First-Serve vs. Gale 
Shapley 

To compare the effectiveness of the proposed 

approach, a set of hundred instances of the first-

come-first-serve approach is compared with the 

results from the Gale-Shapley (GS) approach. Given 

that the preference ordering of the designers and 

machine owners does not change, GS always yields 

one stable solution for all hundred instances of the 

first-come-first-serve method, which is a property of 

the algorithm itself. 

Consider Figure 3, where the average rank obtained 

by the hundred matching instances of the first-come-

first-serve approach is compared with that of GS. In 

this case, ‘rank’ is defined as being the preference 

number to which the designer is matched. For 

example, if the designer has a preference ordering of 

1, 2, 3…10 and is matched to 3 then he/she will 

attain a rank of 3. In an ideal matching scenario the 

average rank amongst the ten designers should be as 

low as possible. This is repeated for all designers 

(Figure 3(a)) and machine owners (Figure 3(b)). 

The average rank obtained through GS is 3.4 for the 

designers and 4.8 for the machine owners. From 

Figure 3(a), it is observed that each of the hundred 

randomly chosen matching instances in FCFS yields 
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a higher average rank than GS. In Figure 3(b), a few 

random matching instances are seen to perform better 

than GS, as shown by the data points that lie below 

the results of GS. This is due to the fact that GS is 

implemented with designers as the dominant side 

within this framework. Yet, in more than 85% of the 

cases that GS performed better. 

 

 

Figure 3Average (a) designer and (b) manufacturer rank 

Now consider Figure 4, where the average expected 

utility obtained by both methods is presented. 

Comparing the data reveals that the average expected 

utility values obtained were 0.327 and 0.187 for the 

designers and machine owners, respectively
8
. 

Counter-intuitively, the average expected utility is 

better than all random matching instances for the 

case of machine owners, however in the case of 

designers there are 6% of random matching cases 

that surpass the GS designer expected utility value. 

Thus, a better average rank need not always imply 

better expected utility and vice-versa. 

In the present case there are 10! (>3.6 million) 

different matching instances. In each of those 

matching instances, the utility attained by the set of 

ten designers and machine owners would at most 

times be different, resulting in a social utility and 

fairness different from that of GS. GS does not yield 

                                                           
8
A higher average does not automatically imply higher 

average expected utility. For example, if the preference 

ordering and expected utility of each manufacturer does 

not vary much from designer to designer then the utility 

gain by GS may not be as evident. 

the most optimal social utility. Amongst the stable 

matching algorithms, the GS algorithm (with 

designers as the dominant side) yields the most 

optimal match for designers and least optimal match 

for machine owners. The results obtained from 

analyzing the average rank and utility suggest that 

GS with designers as the dominant side is marginally 

biased in favor of the designers, as is to be expected, 

given the workings of the algorithm itself. However, 

the situation is not that bad as it sounds for machine 

owners. It is shown that most of the random 

matching (achieved by FCFS) yields social utility 

much lower than the one obtained through GS even 

in the case of machine owners. This is because it is 

only a tiny proportion of stable matching instances 

that the social utility is least optimal for machine 

owners. 

 

 

Figure 4Average (a) designer and (b) manufacturer utility 

3.2. Repeating with Different Initial 
Conditions 

The preference ordering and hence the matching 

depends on the expected utilities of designers and 

machine owners for one another. These expected 

utilities depend on the preferences of designers and 

machine owners towards the attributes which has an 

uncertainty factor associated with it. This uncertainty 

is accounted for in the analysis by running the 

analysis for different utility functions. These 

different utility functions thus generated serve as the 

initial conditions for that iteration. The analysis is 

repeated for fifteen different initial conditions to 
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further assess the effectiveness of the proposed 

approach. 

The results for the fifteen different initial conditions, 

comparing the GS and first-come-first-serve method, 

are shown in Figures5 and 6. The average designer 

rank of GS with first-come-first-serve for the fifteen 

cases is compared in Figure 5(a). The thí  box-plot 

summarizes the average designer rank data 

distribution for the hundred random matching 

instances in the thí  initial condition run. The same 

data is shown in Figure 5(b) for the manufacturer. 

 

 

Figure 5(a) Designer and (b) manufacturer rank for 

different initial conditions 

 

It is observed that the GS results lie under the 

average designer rank data distributions, which 

suggests that GS gives the better average rank, both 

in absolute terms and in comparison to the hundred 

random matching instances, for the designer than the 

manufacturer. Further, the results also suggest that 

GS gives a better rank both for designers and 

machine owners, despite its slight bias towards 

optimizing designers. 

The average expected utility for each of the fifteen 

iterations is compared in Figure 6 for both designers 

(Figure 6(a)) and machine owners (Figure 6(b)). 

4. CONCLUSION AND FUTURE WORK 

In this paper, we implement utility maximization and 

the Gale-Shapley algorithm to a decentralized design 

scenario within the realm of additive manufacturing. 

The GS algorithm is employed with designers as the 

dominant side in the matching problem. It is 

established that GS, despite its bias towards 

designers as the dominant side, makes both designers 

and machine owners better off when compared to the 

present first-come-first-serve approach. However, GS 

does not yield the most optimal match for all 

designers and machine owners. Nevertheless, with 

the restriction of justified envy GS yields the most 

optimal match for designers. Justified envy is 

important as we want all designers and machine 

owners to use the matching framework and not go for 

strategies outside the platform which may be 

detrimental. 

 

 

Figure 6 (a) Designer and (b) manufacturer expected 

utility for different initial conditions 

It can be concluded that preference ordering based on 

expected utility maximization followed by the Gale-

Shapley algorithm is an effective approach that can 

be followed in the decentralized design and 

production scenario by massive advent of additive 

manufacturing. It offers significantly higher 

advantage over the present first-come-first-serve 

approach. 

In the present analysis, the scenario is restricted to be 

a stable matching problem. This is important in the 

scenarios where both designers and machine owners 

are independently trying to strategize and optimize 

the match they receive. However, in those settings 

where strategic behavior is not important GS is not 

the most suited matching algorithm. For example, 
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consider a design company where the designers are 

availing the 3Dprinting resource of the company to 

test their prototypes. Here the concept of stable 

matching would be impractical. Other matching 

algorithms like the Top Trading Cycle [20] and 

Hungarian algorithm [14] would prove more 

effective. 

In addition, the scope of this paper also restricts the 

scenario to one-to-one matching. Theoretically, 

higher efficiency can be achieved by matching 

multiple designs to the same manufacturer until their 

schedule is completely utilized. Matching algorithms 

that relax such assumptions are expected to improve 

the results further. Moreover, in the same or 

additional scenarios, more attributes such as the cost 

of the part, flexural modulus and the geographical 

distance between agents can be considered for 

expected utility calculations. 
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APPENDIX 
Table A1. Characteristics of designers 

# Design Makerbot Ultimaker Witbox B9Creator Form1+ Res. TS Area (cm
2
) 

D1 CarabinerClip 2.25 h 1.55 h 1.88 h 3.68 h 2.25 h High Low 4.28 

D2 Celtic Butterfly 0.28 h 0.35 h 0.40 h 0.12 h 0.17 h Med. Low 23.31 

D3 Dalpek Gyro Air 6.25 h 7.67 h 8.97 h 3.30 h 2.40 h Med. High 49.00 

D4 
Duo Tone 

Whistle 
2.27 h 1.77 h 1.83 h 0.72 h 0.70 h Low Med. 57.5 

D5 Groot Bust 4.73 h 6.15 h 6.85 h 4.27 h 2.68 h Low Low 38.36 

D6 JFK Bust 7.73 h 6.15 h 11.15 h 5.13 h 5.33 h Low Low 56.91 

D7 Magnetic T-Nut 0.13 h 10.13 h 0.12 h 0.25 h 0.20 h Med. Med. 1.32 

D8 PacMan Ghost 0.77 h 0.08 h 1.07 h 1.20 h 0.88 h Low High 6.25 

D9 Scripted Vase 2 9.48 h 1.37 h 13.00 h 4.65 h 6.25 h High High 57.3 

D10 Voronoi Elephant 3.15 h 11.28 h 4.90 h 2.67 h 1.73 h High Low 30.98 

 

Table A2. Characteristics of manufacturers 

# Machine Res. (µm) 
Volume 

(cm
3
) 

Area 

(cm
2
) 

Material 1 

 (TS in MPa) 

Material 2 

 (TS in MPa) 

M1 Makerbot (FDM) 100-300  6758.78 436.05 ABS (22) PC-ABS (41) 

M2 Makerbot(FDM) 100-300  6758.78 436.05 ABS (22) PC-ABS (41) 

M3 Witbox (FDM) 25-100 2578.13 156.25 ABS (22) PC-ABS (41) 

M4 Form 1+ (SLA) 50-300 12474.00 623.70 Poly 1500 (31) Protogen (43.8) 

M5 B9 Creator (SLA) 5-100 1597.64 78.62 Poly 1500 (31) Protogen (43.8) 

M6 Makerbot (FDM) 100-300  6758.78 436.05 PC (68) ULTEM 9085 (72) 

M7 Makerbot (FDM) 100-300  6758.78 436.05 PC (68) ULTEM 9085 (72) 

M8 Witbox (FDM) 25-100 2578.13 156.25 PC (68) ULTEM 9085 (72) 

M9 Form 1+ (SLA) 50-300 12474.00 623.70 Tusk Somos (63) - 

M10 B9 Creator (SLA) 5-100 1597.64 78.62 Tusk Somos (63) - 

 

Table A3. Utility functions 

Attribute Preference Monotonicity 
Left hand side 

utility(a+bx+cx
2
) 

Right hand side 

utility(a+bx+cx
2
) 

 0 0.6 1 0.6 0 

Manufacturer attribute 
Resolution 

(µm) 

High Decreasing 5 13.5 22 - - 

Medium Ideal 22 41 60 75 90 

Low Increasing - - 300 195 90 

Manufacturer attribute TS(MPa) 

High Decreasing 20 30 40 - - 

Medium Ideal 35 42.5 50 57.5 65 

Low Increasing - - 60 67.5 75 

Designer attribute 
Printing time 

(hrs) 
- Ideal 0.5 2.25 4 7 10 

 

Attribute Preference Monotonicity 
Left hand side 

utility(a+bx+cx
2
) 

Right hand side 

utility(a+bx+cx
2
) 

 0.3 0.7 1 0.55 0.1 

Designer attribute 
Resolution (res 

in µm) 
- Decreasing - - 

Min 

res 

mean 

res 

Max 

res 

Designer attribute Area(ratio) - Increasing 0.1 0.55 1 - - 
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Table A4. Expected utility calculations and preference ordering of designers 

 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

D1 

0.0000 

(9) 

0.0049 

(4) 

0.0000 

(7) 

0.3383 

(6) 

0.0000 

(8) 

0.0399 

(10) 

0.0448 

(2) 

0.0399 

(1) 

0.3454 

(3) 

0.0070 

(5) 

D2 

0.0000 

(7) 

0.7560 

(9) 

0.5409 

(10) 

0.7558 

(2) 

0.7527 

(4) 

0.0333 

(5) 

0.7893 

(8) 

0.5742 

(3) 

0.7616 

(6) 

0.7585 

(1) 

D3 

0.0312 

(4) 

0.0339 

(9) 

0.0312 

(2) 

0.2063 

(1) 

0.0183 

(3) 

0.0000 

(5) 

0.0027 

(7) 

0.0000 

(6) 

0.1880 

(8) 

0.0000 

(10) 

D4 

0.3393 

(2) 

0.3404 

(7) 

0.3404 

(3) 

0.0010 

(8) 

0.0010 

(1) 

0.3393 

(6) 

0.3404 

(9) 

0.3404 

(10) 

0.0057 

(4) 

0.0057 

(5) 

D5 

0.0000 

(7) 

0.5670 

(9) 

0.4057 

(10) 

0.5668 

(2) 

0.5645 

(4) 

0.0499 

(5) 

0.6169 

(8) 

0.4556 

(3) 

0.5756 

(6) 

0.5733 

(1) 

D6 

0.1950 

(2) 

0.1955 

(3) 

0.1955 

(1) 

0.0201 

(7) 

0.0201 

(8) 

0.1616 

(6) 

0.1621 

(4) 

0.1621 

(5) 

0.0005 

(9) 

0.0005 

(10) 

D7 

0.0267 

(4) 

0.0302 

(9) 

0.0267 

(2) 

0.2573 

(1) 

0.0157 

(3) 

0.0000 

(5) 

0.0035 

(7) 

0.0000 

(6) 

0.2417 

(8) 

0.0000 

(10) 

D8 

0.2413 

(2) 

0.2420 

(3) 

0.2420 

(1) 

0.0177 

(7) 

0.0177 

(8) 

0.2121 

(6) 

0.2127 

(4) 

0.2127 

(5) 

0.0006 

(9) 

0.0006 

(10) 

D9 

0.0000 

(9) 

0.5670 

(10) 

0.4057 

(2) 

0.5668 

(7) 

0.5645 

(4) 

0.0000 

(5) 

0.5670 

(3) 

0.4057 

(8) 

0.5728 

(1) 

0.5705 

(6) 

D10 

0.0260 

(2) 

0.5300 

(4) 

0.3866 

(5) 

0.5191 

(7) 

0.5170 

(9) 

0.0000 

(10) 

0.5040 

(3) 

0.3606 

(8) 

0.5038 

(1) 

0.5018 

(6) 

 

Table A5. Expected utility calculations and preference ordering of machine owners 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

M1 

0.0000 

(6) 

0.0000 

(4) 

0.0544 

(8) 

0.3562 

(5) 

0.0697 

(3) 

0.3919 

(9) 

0.0000 

(1) 

0.3561 

(2) 

0.0089 

(7) 

0.0000 

(10) 

M2 

0.0021 

(6) 

0.0697 

(4) 

0.0343 

(8) 

0.2353 

(5) 

0.1186 

(10) 

0.2364 

(9) 

0.0021 

(2) 

0.2351 

(3) 

0.0699 

(1) 

0.0980 

(7) 

M3 

0.0000 

(4) 

0.0892 

(6) 

0.0054 

(8) 

0.4479 

(10) 

0.1040 

(5) 

0.4479 

(2) 

0.0000 

(9) 

0.4479 

(3) 

0.0892 

(1) 

0.1106 

(7) 

M4 

0.0743 

(6) 

0.2030 

(4) 

0.0661 

(8) 

0.2883 

(9) 

0.2482 

(5) 

0.3411 

(10) 

0.0632 

(2) 

0.2851 

(1) 

0.2606 

(3) 

0.2033 

(7) 

M5 

0.0000 

(6) 

0.1426 

(9) 

0.0007 

(4) 

0.1574 

(8) 

0.1427 

(5) 

0.2420 

(10) 

0.0000 

(2) 

0.1566 

(3) 

0.2147 

(1) 

0.1427 

(7) 

M6 

0.0000 

(6) 

0.0000 

(4) 

0.0515 

(8) 

0.2241 

(5) 

0.0657 

(3) 

0.2577 

(9) 

0.0000 

(1) 

0.2238 

(2) 

0.0086 

(7) 

0.0000 

(10) 

M7 

0.0029 

(6) 

0.0930 

(4) 

0.0351 

(8) 

0.3137 

(5) 

0.1418 

(10) 

0.3147 

(9) 

0.0029 

(2) 

0.3135 

(3) 

0.0931 

(1) 

0.1213 

(7) 

M8 

0.0000 

(4) 

0.0780 

(6) 

0.0114 

(8) 

0.3919 

(10) 

0.1092 

(5) 

0.3919 

(2) 

0.0000 

(9) 

0.3919 

(3) 

0.0780 

(1) 

0.1230 

(7) 

M9 

0.0624 

(6) 

0.1391 

(9) 

0.0448 

(5) 

0.1975 

(4) 

0.2161 

(8) 

0.2883 

(10) 

0.0435 

(2) 

0.1960 

(1) 

0.2365 

(3) 

0.1393 

(7) 

M10 

0.0000 

(6) 

0.2377 

(9) 

0.0012 

(4) 

0.2623 

(8) 

0.2379 

(5) 

0.3093 

(10) 

0.0000 

(2) 

0.2610 

(3) 

0.2780 

(1) 

0.2378 

(7) 

 

 

 

 

 


