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Previous attempts to solve for vibration of non-uniform hull girder have used Finite Element Analysis
(FEA). This work utilizes the Rayleigh–Ritz (R–R) method to analyze the vertical vibration of a non-
prismatic mathematical hull, with arbitrary longitudinal distribution of sectional properties. It is shown
that (a) the R-R method provides reasonably accurate results for the actual natural frequency; and (b) the
R–R method offers significant computational advantages over FEA. This computational supremacy can be
exploited in the initial design stages when several designs are to be iteratively tested for its structural
characteristics. The natural frequencies and modeshapes are obtained by the Rayleigh–Ritz method. The
non-uniform beam modeshape is a weighted series sum of the (closed-form) uniform beam modeshapes.
Only a few uniform beam modes are necessary to generate the non-uniform beam modeshape and a
convergent hull girder frequency. Thus, the method is very effective in the low-frequency domain like
ship-structure. The proposed method is compared with FEA for two illustrative structures : (a) a con-
tainership and (b) a tanker; and also with several hulls from established literature. Modal convergence
studies have also been included. The distortions of the non-uniform modeshapes have been studied in
the light of the loading conditions of the hull.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Investigation of ship hull girder vibration is very important at
the initial stages of ship design, especially with large ocean going
vessels, having longer and larger dimensions. Ship design must be
judged in the light of hydroelasticity for the structural integrity
and performance of the vessel. Long ships with shallow depth and
draft are comparatively flexible in longitudinal bending and be-
come prone to 2-noded vertical hull girder vibration (first noticed
in 1967).

Ship springing is the resonant response of the ship to hydro-
dynamic excitation caused by incident waves. It is a low-fre-
quency, large amplitude, steady-state phenomenon. Springing is a
continuous process excited by waves at an encounter frequency
equal to the fundamental wet natural frequency of the hull. It
becomes more important at increased speeds, lengths, and hull
girder flexibilities. The resonant frequency occurs at the high-fre-
quency tail of the sea spectrum. The total deflection is a super-
position of the dry hull flexural modes. Springing is the most
ering and Naval Architecture,
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pronounced in head seas, in lighter sea states, when the Tz (aver-
age zero-up crossing period) is small. Full-form tankers are long
enough to be modeled as beams. This is possible for slender ships
with large L/D ratio (for vertical bending), and large L/B ratios (for
horizontal bending). Beam theories are used at the initial design
stages, which are good for the first few modes of vibration (Bishop
and Price, 1979). Usually, the hull is considered as a free-free Ti-
moshenko beam with varying sectional properties. We need an
accurate weight and bending stiffness distribution to calculate the
dry natural frequencies of the hull.

The objective of this work is as follows :

� Application of the Rayleigh–Ritz method to an Euler-Bernoulli
beamwith arbitrarily varying mass and stiffness distributions. A
higher-order non-uniformity in section area of beam can be
handed easily as the methodology involves integral equations.

� Demonstrating the efficacy of the Rayleigh–Ritz method as an
alternative to FEA in the vibration analysis of a hull girder in the
early stages of ship design.

� Using closed-form admissible functions of a free-free Euler–
Bernoulli beam, which are the uniform beam modeshapes, in
the above method for analysing a hull girder for its dry vertical
vibration frequencies.

� Generating converged non-uniform modeshapes for the hull
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Nomenclature

L Length of vessel
B Breadth
D Depth of vessel
x Independent space variable along the ship length
ρw Density of water

( )m x Mass per unit length
ρ Density of the material
E Modulus of elasticity of the material

( )I x Second moment of area for the cross section about
horizontal neutral axis

( )z x t, Vertical vibratory displacement
Φ ( )xj jth non-uniform beam flexural mode

φ ( )xk kth uniform beam modeshape with free end condition
γj Frequency parameter of the jth uniform beam

modeshape
ajk Weight of contribution of jth uniform beam mode-

shape to kth non-uniform beam modeshape
ωj jth natural frequency of vibration
ωjND Non-dimensionalized jth natural frequency
I0 Vertical 2nd moment of the midship section
A0 Structural cross sectional area of the midship section
βjk Element (j,k) of the generalized mass matrix
αjk Element (j,k) of the generalized stiffness matrix
λ Eigen values of the Rayleigh Ritz method
T Total kinetic energy of the beam
U Total potential energy of the beam
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girder from the above method, bypassing the cumbersome and
expensive experimental techniques (Zhu et al., 2011). They can
be used in the normal-mode summation-based hydroelastic
analysis of wave-induced flexural responses, in the design
spiral.

Timoshenko (1937) applied the theory of bar vibration with
variable cross-section to hull girder vibration, using the Rayleigh–
Ritz method. A mathematical hull, with fore-aft symmetry and
parabolic mass and stiffness distributions, was analyzed of the first
two natural frequencies, using the first two ‘symmetric’ uniform
free-free beam modeshapes. Bishop and Price (1979), in their
pioneering work on hydroelasticity, considered hull girder to be
both Euler–Bernoulli and Timoshenko beams for the analysis, with
the mass and stiffness distributions varying arbitrarily along the
length. However, the explicit expression for the non-uniform beam
modeshapes was not used in the subsequent “in-vacuo” free vi-
bration analysis. Two practical hulls were analyzed for their ver-
tical frequencies using uniform beam theory and the Prohl–Myk-
lestad method.

1.1. Non-uniform beam vibration

Enough literature is available on the vibration analysis of non-
uniform beams, using energy-based variational methods and FEA;
dealing with beams whose non-uniformity varied mathematically
along the length. Abrate (Qiusheng et al., 1996) studied Euler–
Bernoulli beams with parabolically varying thickness, applying the
Rayleigh–Ritz method using polynomial admissible functions, to
calculate the natural frequencies. Qisheng et al. (1996) used
polynomial/exponential mass and stiffness distributions, and
Bessel functions in the self-conjugate GDE to establish the non-
uniform modes and corresponding natural frequencies. Laura et al.
(1996) studied beams with bilinearly varying cross-sections using
optimized the Rayleigh–Ritz method and FEA, whose results were
in good agreement. Zhou and Cheung (2000) studied linearly and
bi-linearly tapered beams with the Rayleigh–Ritz method, but
static deflections as the admissible functions in the process. For
Auciello (2001), the admissible functions were linearly in-
dependent orthogonal polynomials generated by the iterative
Gram–Schmidt orthonormalization; to study an axially loaded
linearly tapered beam. Ece et al. (2007) considered the beam with
exponentially varying thickness.

From this literature, we come to know the following:

� The variational nature of the R–R method leads to an upper
bound of frequencies, and to a monotone convergence as the
number of admissible functions goes to infinity.
� The mathematical closed-form variation of the cross-section
gives closed-form solutions of the non-uniform modeshapes,
and thus, very accurate frequencies.

� The frequency ratio (ratio of non-uniform beam frequency to
the uniform beam frequency) was seen to be smaller for higher
mode numbers. Thus, the effect of non-uniformity is more
pronounced for the lower modes.

However, for a typical merchant vessel, the hull girder has ar-
bitrary (non-mathematical) distributed mass and stiffness dis-
tributions, often showing saw-tooth-like variations, as shown in
literature (Bishop and Price, 1979; Senjanovic et al., 2009; Seng
et al., 2012; Zhou and Zhao, 2006; Hirdaris et al., 2003). The non-
uniformity influences the natural frequencies and modeshapes.
The closed-form expression of hull girder flexural modes cannot
be generated through any of the above analytical methods. Closed-
form solutions are more attractive to the structural dynamics
analyst, to further use them in the hydroelastic response analysis
of the vessel.

1.2. Ship hull vibration analysis

Till the 1960's, ship designers used empirical formulations,
treating the ship as a free-free beam, to calculate the natural hull
girder vibration frequencies in the early stages of design. The
empirical relations were based on past data, as shown by Todd
(1961) and Kumai (1967) and the SR94 Panel. Classification society
rules do not explicitly account for the effect of hull girder flex-
ibility on the global loads. From 1970s, when ships became longer
and faster, a more scientific approach was required to characterize
the flexural behavior of vessels. Increase in main dimensions
makes the vessel more flexible, and the requirement for high
speed causes the encounter frequencies of the incident wave
spectrum (esp. head seas) to be closer to the wet natural fre-
quencies of the ship’s flexible modes. Wet natural frequency
�0.5 Hz for L4300 m. The accurate determination of natural
frequencies and modeshapes of the hull is of significant im-
portance for understanding its hydroelastic characteristics. Ex-
periments were conducted by Zhu et al. (2011) with backbone
models. However, linear springing is rarely excited in model tests
to observe the 2-noded vertical vibration modeshape.

FEA is still the most commonly used vibration analysis tech-
nique for ship structures, since the last four decades, as seen in the
works of Camiseiti et al. (1980), Skaar and Carlsen (1980), Wan-xic
et al. (1983). Hirdaris et al. (2003) used three FEA modules of the
commercial FEA code ANSYS to analyze a bulker. Pin and De-you
(2006) used dynamic stiffness matrices in a 6-element hull to
study a VLCC. Senjanovic et al (2009) analyzed a containership by
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FEA for both fully loaded and ballasted conditions, for both vertical
and coupled horizontal-torsional vibrations. Pedersen and Jensen
(2009) used FEA to analyze the free vibration of a Panamax con-
tainership. The 2-noded vibration mode was generated by the
least-square approximation, which gave an empirical modeshape
for this vessel. Hirdaris et al. (2009) studied the Great Lakes Bulk
carrier by modeling it as a 20-element non-uniform Timoshenko
beam as explained by Bishop and Price (1979). Along with their
experimental efforts, Zhu et al. (2011) relied on FEA to generate
the natural frequencies and modeshapes of the backbone model,
to be later used for hydroelastic studies. Seng et al. (2012) modeled
a post-Panamax container ship as a non-uniform Timoshenko
beam, whose non-uniform modes were generated by Stodola's
method, which was popular in the 1970s.

1.3. Overview of this work

Here, we explore the scope of Rayleigh–Ritz (RR) approach in
identifying the natural frequencies and modeshapes of the non-
prismatic hull girder. We provide comparative results with
(a) Finite Element Analysis (FEA), (b) empirical formulae and
(c) previous literature to show that the accuracy is not compro-
mised in the RR approach. We identify the need to integrate effi-
cient structural analysis in the initial stages of hull design. A vessel
is a custom-built product designed based on the owner require-
ments. No two ships are the same. In the initial design stages,
several iterations are performed to optimize the capacity, hydro-
dynamic drag characteristics and several other variables. The
generation of the hull resonance diagram requires the hull girder
natural frequencies, in all the global modes; and they should not
match with the propeller-induced vibration frequency (shaft fre-
quency�number of blades) with an accuracy of ∓5%. The struc-
tural dynamics and fluid-structure-interaction characteristics of
the final hull form gets analyzed. However, many a times the hull
form will be deemed structurally unfit and will have to be re-de-
signed. Thus, integrating structural analysis into the initial design
phase is necessary to avoid re-design and reiterating the entire
analysis. This can be achieved by improving the efficiency of
structural analysis without compromising a lot on solution quality.

Here, we analyze two hull forms of the Indian Merchant Navy,
i.e. (a) SCIM Containership and (b) DS Tanker. The dry natural
frequencies of vertical hull girder vibration has been analyzed
through the energy-based Rayleigh–Ritz method, and verified
through Finite Element Analysis, using one-dimensional beam
elements of equal length. We conclude new insights about non-
uniform beam modeshapes with respect to the spatial correlation
of the admissible functions with respect to the mass and stiffness
distributions; which can be used to improve the efficiency of RR
application. The efficacy of the Rayleigh–Ritz method in calculating
the natural frequencies of vertical hull girder vibration is de-
monstrated by several case studies with the vessels analyzed by
Bishop and Price (1979), Hirdaris et al. (2003), and Senjanovic et al.
(2009). The frequency-convergence through the R–R method, and
the non-uniform modeshapes for these vessels have been
established.

The originality of the paper lies in the following :

� Identifying the use of the Rayleigh–Ritz method to analyze the
free vertical-plane vibration characteristics of a non-prismatic
hull girder in initial design stages, as an alternative to FEA.

� Convergence study of the number of uniform beammodeshapes
required, as a weighted sum, in order to generate the dry ‘in-
vacuo’ non-uniform hull girder vibration frequency and
modeshape.

� Analysing several hull forms from published literature (who use
empirical methods and/or FEA), and establishing comparable
natural frequencies.
� Identifying how the spatial correlation between the property

distributions and the uniform beam modeshapes/curvatures
influences the distortion of the non-uniform beam modeshapes.
The loading condition of the merchant vessel strongly influ-
ences the modeshape curvatures and amplitudes.

The structure of the paper is as follows :

� Applying the Rayleigh–Ritz method in analysing the free dry
vibration of the hull : generation of the weights of the ad-
missible functions.

� Establishing the converged non-uniform beam natural fre-
quencies, and their corresponding modeshapes.

� Comparison of the above results with FEA studies and empirical
formulations of vertical vibration frequency of the hull girder.

� Drawing insights of the distortion of the converged non-uni-
form beam modeshapes from the corresponding uniform beam
modeshape due to their spatial correlations (or lack of it) with
respect to the mass and stiffness distributions.
2. Problem formulation and cases studied

The merchant ship hull is modeled as a non-uniform free-free
Euler–Bernoulli beam, of length L, with arbitrarily varying mass

( )m x (kg/m) and stiffness ( )EI x (N m2) distributions. The dis-
tribution does not vary based on a previously defined analytical/
mathematical variations, unlike in work (Serge, 1995; Qiusheng
et al., 1996; Laura et al., 1996; Zhou and Cheung, 2000; Ece et al.,
2007; Timoshenko, 1937; Thomson et al., 1998; Auciello, 2001).
The distribution is very arbitrary depending on the design and
loading. The hull has been analyzed for dry vertical hull girder
vibration, using the energy-based Rayleigh–Ritz method. Finally,
comparative results with FEA, empirical estimates, and published
work (12�16) are presented. The published work includes :

(1) Bishop and Price (1979), Chapter 4 : Destroyer (Euler–Ber-
noulli beam)

(2) Bishop and Price (1979), Chapter 4 : Tanker (Timoshenko
beam)

(3) Hirdaris et al. (2003) : OBO MV Derbyshire Bulker (FEA, equal
beam elements)

(4) Senjanovic et al. (2009) : 7800 TEU Containership (FEA, 1D)

2.1. Mathematical hull without fore and aft symmetry (Unlike Ti-
moshenko, 1937)

Table 1 gives the main particulars of the two vessels, provided
by the Indian Register of Shipping. Mumbai, India. Once the basic
design is obtained, the body plan can be imported into an image
reading code in MATLAB which can replace a wide range of body
plan sections with equivalent super-ellipses of the form

( ) ( )+ =( )
( )

( )

( )

( )
1y x z

a x

p x z
b x

q x, . While local half-breadth and local draught

determine the values of ( )a x and ( )b x respectively, a computa-
tionally efficient code is developed which identifies the powers, m
and n to define the geometry of the section. For a semi-super-
ellipse, with θ = π

2
, a closed form solution exists for various geo-

metric properties. In the case of ship sections we have θ = π
2
.

Closed-form expressions may be safely employed for evaluation of
the geometric properties. The details can be found in Sadowski
(2011).

The authors have previously explained in their work Datta and
Thekinen (2012) the application of mathematical curves called
rectellipses for the generation ship-like sections. Developing on



Table 1
Main particulars of case-study vessels.

Particulars Unit SCIM
Container

DS Tanker

Length Overall LOA metre 262 249.98
Length between perpendiculars L metre 248 239
Moulded Beam B metre 32.2 44
Moulded Depth D metre 19.5 21.5
Moulded Draught T metre 13.2 15.1
L/B – 7.70 5.43
B/T – 2.44 2.91
L/D 13.44 11.63
Displacement Tonnes 74,660 136,011
Light weight Tonnes 16,875 21,228
Steel weight Tonnes 15,103 16,747
Semi-concentrated weight Tonnes 1772.0 4481
Dead weight Tonnes 57,785 114,783
Block coefficient – 0.691 0.836
2nd moment of area of cross-section
about horizontal neutral axis I0

m4 253 610
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this idea, the hull form of a containership and tanker was gener-
ated. The 3D hull form was generated as a collection of 100 rec-
telliptic stations. The parameters of the individual rectelliptic
stations were varied to closely represent the design of the actual
hull-form of the containership and tanker. Assuming a hollow
beam with average shell thickness of 16 mm made of steel
( ρ = kg m7850 / 3), the longitudinal mass and second moment of
area distributions respectively were obtained. These distributions
were non-analytic along the length without fore-aft symmetry.
2.2. Non-uniform beam sectional properties distribution

The mass ( )m x and stiffness ( )EI x distributions are distributed
over the Length Overall (LOA) of the vessel, based on the long-
itudinal distribution of geometric properties. The longitudinal
flexural rigidity is provided by : keel plate, side shell, main deck,
longitudinal bulkheads, centre girder, side girders, longitudinal
frames, deck longitudinals, superstructures, etc. Transverse bulk-
heads do not participate in longitudinal hull girder stiffness. But
they participate in the mass distribution as peaks in regular in-
tervals. The following members of the hull do not contribute to the
longitudinal stiffness: transverse bulkheads, floors, margin plates,
transverse frames and stiffeners, deck beams, deck transverses,
tank side brackets, etc. To obtain the mass distribution ( )m x , the
following procedure was followed:

� Steel weight was calculated from the Hull Numeral by the
Watson and Griffin estimation method (Aasen and Bjørhovde,
2010) and was distributed over the length ( )< <x L0 , based on
sectional girth from rectelliptic properties.

� Semi-concentrated part is distributed as (i) engine and main
machinery ( < < )x L0 0.2 ; and (ii) deck machinery ( < < )L x L0.9 .
The semi-concentrated weights reduce the natural frequency of
the hull girder. The farther the semi-concentrated weights are
from the nodes of the vibration modeshape, the greater is the
associated kinetic energy, the lower are the frequencies of
vibration.

� Deadweight was completely distributed between
( < < )L x L0.2 0.9 based on the sectional area. It adds to the in-
ertia without affecting the flexural rigidity of the hull girder.
Hence, the loaded ship has a lower natural frequency, closer to
the tail-end of the sea spectrum, and thus, is more prone to
springing.
3. Analysis methodology

Here, we describe the methodology to study the free vibration
of an Euler–Bernoulli beam, with arbitrarily (non-analytically)
varying mass and stiffness distributions using the Rayleigh–Ritz
approach. The objective is to obtain (i) natural frequencies and (ii)
non-uniform modeshapes of the hull. We also mention the other
popular approaches of hull girder vibration analysis, to which our
results will be compared.

3.1. Non-uniform beam vibration

The steps in this are as follows :

� The admissible functions of the Rayleigh–Ritz (R–R) method are
first generated. Here, they are the modeshapes of a uniform
(prismatic) free-free beam. They act as orthogonal admissible
functions in the R–R method, satisfying the same boundary
conditions as the hull.

� The minimization of the natural frequency from an assumed
modeshape leads to N number of distinct λ ω= 2, i.e. the square
of the non-uniform beam natural frequencies.

� Re-instating the λ ω= 2 leads to the weights of the admissible
functions and hence the non-uniform modeshapes, which in-
fluence the potential and kinetic energies of the vibrating non-
uniform beam.

� A convergence study gives the number of admissible functions
required for the final frequency and modeshape of the non-
uniform beam.

3.1.1. Admissible functions
The out-of-plane flexural displacement of the non-uniform

beam, undergoing unforced, undamped vibration, in the vertical
plane, obeys the following governing differential equation (N/m)

( ) ( )
( )

∂
∂

+ ∂
∂

( )
∂

∂
=

( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥m x

z x t

t x
EI x

z x t

x

, ,
0.

1

2

2

2

2

2

2

There is no axial load on the beam. Pure bending is considered,
ignoring shear deformation and rotary inertia. The depth-to-
length ratio may be greater than 1/20, but the beam section is
mostly hollow, except at the positions of the transverse bulkheads,
which do not participate in the longitudinal stiffness. The “thin
beam” approximation is assumed here, since the flexural deflec-
tions are small. Assuming small-amplitude displacements, where
linear superposition holds, the total flexural displacement, in Eq.
(1), can be assumed to be a superposition of the modal displace-
ments

( ) ( )∑ Φ= ( )
( )=

∞

z x t x q t,
2j

j j
1

In Eq. (2), Φ ( )xj , the non-uniform beam mode, is a weighted
sum of the admissible functions, which must satisfy the same
boundary conditions. Usually, in the Rayleigh–Ritz method, it is
convenient to choose the admissible functions which satisfy the
geometric boundary conditions. For a free-free beam, the shear
force and bending moment must be zero at the ends (natural
boundary conditions). Instead of polynomial admissible functions
(Abrate, 1995; Auciello, 2001), or static admissible functions (Zhou
and Cheung, 2000), a set of closed-form modes have been used
here, as shown below.

The uniform beam modeshape, φ ( )x ,k with free-free end con-
ditions, obeys ( ) ( ) ( ) ( )φ φ φ φ= = = =′′ ′′ ′′′ ′′′L L0 0, 0, 0 0, 0j j j j . The uniform
beam modeshape is given as:
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( ) ( ) ( ) ( )φ γ γ υ γ γ

υ
γ γ
γ γ

γ γ
γ γ

( )= + + +

=
+
−

=
− +

−

⎡⎣ ⎤⎦x cos x x sin x sinh x

sin L sinh L

cos L cosh L

cos L cosh L

sin L sinh L

cosh ;j j j j j j

j
j j

j j

j j

j j

This leads to the frequency equation ( ) ( )γ γ =cos L Lcosh 1j j . This
is satisfied by distinct values of γ Lj , leading to orthogonal mode-
shapes. The frequency parameters are calculated by the Newton–
Raphson method. The higher-order modeshapes are generated by
more accurate methods as given by Gonçalves et al. (2007). The

uniform beam natural frequency is ( )ω γ=
ρ

Lj j
EI

L A

2 0
4 0

. The elemen-

tary beam modeshapes are orthogonal to each other, and they are
input into the Rayleigh–Ritz method. The odd admissible functions
are symmetric about the midship, while the even admissible
functions are anti-symmetric about the midship.

3.1.2. Rayleigh–Ritz method
Let the vibratory displacement of the non-uniform beam be

( ) ω= ( )z x t Z x cos t, , where ( )Z x is an assumed admissible shape
function in space, and ω is the circular frequency. The strain po-
tential energy (U) and the kinetic energy (T) of the beam, as
functions of space and time, are expressed as :

( ) ( ) ( )

( ) ( ) ( )

ω

ω ω

= ∙

= ∙ ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦

x t EI x
d Z x

dx
cos t

T x t m x Z x sin t

U ,
1
2

;

,
1
2

. 3A,B

2

2

2
2

2 2 2

The maximum energies are ∫= ( ) =
=

= ( )⎡
⎣⎢

⎤
⎦⎥EI x dx ;U Tmax x

x l d Z x

dx max
1
2 0

22

2

∫ω ( ) ( )
=

= ⎡⎣ ⎤⎦m x Z x dx
x

x l2 1
2 0

2 .

In a conservative system, the maximum potential energy equals
the maximum kinetic energy, and thus, the circular frequency can
be expressed as

∫

∫
ω =

*
=

( )

( ) ( ) ( )

=

= ( )

=

=

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
U
T

EI x dx

m x Z x dx 4

x

x l d Z x

dx

x

x l
2

1
2 0

2

1
2 0

2

2

2

A naturally vibrating system always adjusts itself to its mini-
mum energy configuration. The exact solution would be that of the
modeshape ( )Z x which minimizes the frequency in Eq. (4). To
reach the minimum frequency, we assume

∑ φ( )= ( )
( )=

Z x a x
5k

N

k k
1

The unknown coefficients of Eq. (5), ak, are calculated by
minimizing the frequency with respect to each coefficient. Ap-
plying the Ritz method as explained in Thomson (1998) and Ti-
moshenko (1937),

∫

∫
∂

∂

( )

( ) ( )
=

( )

=

= ( )

=

=

⎧
⎨
⎪⎪

⎩
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⎤
⎦⎥

⎡⎣ ⎤⎦

⎫
⎬
⎪⎪

⎭
⎪⎪a

EI x dx

m x Z x dx
0

6
k

x
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dx

x

x l

1
2 0

2

1
2 0

2

2

2

{ }

∫

∫
∫

∫

∂
∂

( )
( )

−
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∂
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=
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=
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=
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dx
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1
2
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2

0

k x
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Using the expressions λ ω= 2, Generalized stiffness
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above set of equations (Eq. (7)) reduces to :
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Here, Eq. (8) may be written in the matrix form as follows:
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For a uniform beam, the matrices of generalized mass βjk and
generalized stiffness αjk are diagonal, showing the decoupling of
various modes of vibration, each associated with a unique natural

frequency, i.e. ω = α
βj

jj

jj
. For the non-uniform beam, as studied in

our paper, the potential energy (PE) associated with a particular
uniform beam modeshape influences the kinetic energy (KE) of
the other uniform modeshapes, and vice-versa. Thus, the ele-
mentary (uniform) beam modeshapes are coupled to each other.
The change in the natural frequency from that of the uniform
beam is influenced by the mass and stiffness distribution over the
length of the beam. A beam which is thicker at the middle and
narrower at the ends (approximately similar to a hull girder) is
likely to be stiffer. This is due to two reasons:

� Reduced kinetic energy of the lighter ends of the beams, which
are the positions of maximum velocity.

� Increased strain potential energy of the stockier middle, where
the curvature and flexural rigidity are both maximum.

The determinant of the square matrix of Eq. (9), when equated
to zero, gives the frequency equation below.
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. .
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Eq. (10) gives an Nth-order equation in λ, and solving it gen-
erates ‘N

0
number of roots : λ λ λ λ……, , , , N1 2 3 , from which we obtain

the natural frequencies of the non-uniform beam:
ω ω ω ω……, , , , N1 2 3 . The non-dimensionalized frequency ωjND is de-

fined as frequency ωj divided by the factor
ρ

EI

L A
0

4 0
, whose dimen-

sion is sec�1. Here, I0 is the vertical 2nd moment of inertia of the
midship section, and A0 is the structural (steel) area of the mid-

ship. For a uniform beam, it is equal to ( )β L .j
2
.

3.1.3. Calculation of the modeshapes of the non-uniform beam
(weight-vectors ajk)

For ≤ ≤k N1 , we input λk into Eq. (10), in order to re-generate
the N�N matrix. Each column corresponds to a weight-vector

< <a j k N,1 ,jk . This matrix is expected to be diagonally dominant,
because Φ ( )xk has the largest contribution from the φ ( )xk , and far
less from the other elementary modes. The jth row in kth column
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gives the weighted contribution of the jth uniform beam mode-
shape in the kth non-uniform mode. Among the N columns, the
particular column that has the largest value for the kth row is
chosen as the kth weight-vector, ordered as

… … … …a a a a a: : : : : :k N1 2 3 . Considering the transpose of the
weight-vector matrix, the row ………a : a : a : : aj j j jN1 2 3 is chosen,
where ‘ j’ is the index of the chosen row. They are multiplied with
the kth elementary modeshape (Eq. (3)) to generate the non-
uniform modeshape, which are not orthogonal to other non-uni-
form modeshapes:

∫∑
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2
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3.1.4. Convergence study
A convergence study has been done to ensure that enough

uniform beam modes φ ( )xk in Eq. (11) are used to satisfactorily
derive the non-uniform modeshapeΦ ( )xj . Odd non-uniform beam
modes require larger contributions from odd uniform beam
modeshapes, but there may be traces of the even uniform beam
modeshapes, too; and vice-versa. Here, the first few uniform
(elementary) modes are included to generate the non-uniform
mode. This converges the non-uniform beam frequencies to their
final values; and the non-uniform modes to their final shapes.

3.2. Validation with other methods

3.2.1. Finite Element Analysis (FEA)
Since FEA is still the most popular method of finding hull girder

natural frequencies, a separate MATLAB code is written to nu-
merically estimate the fundamental and higher order frequencies
of the hulls. The energy-based Finite Element Method has been
used, obeying the free-free boundary conditions of the non-uni-
form Euler–Bernoulli beam. The difference between RRM and FEM
lies in choosing the shape functions. In RR, the shape function is
chosen over the entire beamwhile in FEM, it is chosen only for one
element, as a third order polynomial.

3.2.2. Empirical frequencies
The results are also compared with empirical formulations

(Todd, 1961; SR,), which were popular till the 1970's.

a) Todd-type SR94 empirical formulation of 2-noded and 3-no-
ded vertical hull girder vibration are given as

= × +
∆

N 9.4 10 19V
BD

L
2

4 3

3
cpm, = × +

∆
N 13.2 10 65V

BD

L
3

4 3

3
cpm,

( )= −N n N1Vn V2 cpm.
b) Schilck-type SR94 empirical formulation of 2-noded and

3-noded vertical hull girder vibration are given as:

= × +
∆

N 27.1 10 14.5V
I

L
2

5 v
3

cpm, = × +
∆

N 38.8 10 58.5V
I

L
3

5 V
3

cpm, ( )= −N n N1Vn V2 cpm.

Here, IV is the second moment of metal area of cross-section of
the midship section.
4. Results

The full analysis under Section 3, including FEA, has been done
in MATLAB. This work is limited to the vertical vibration only, since
this mode of vibration is well-decoupled from the horizontal-
torsional modes of hull girder vibration. For a prismatic beam,
= =a a1, 0.jj jk For the jth natural frequency of the non-uniform beam,

the weight ajj is the largest. However, the weight ajk, with ≠j k,
also has a non-zero contribution to the potential and kinetic en-
ergies of the vibrating beam.

Table 2 is the comparative study of the Rayleigh–Ritz method
(Section 2), FEA, (Section3.2.1) and empirical estimates (Sec-
tion3.2.2) of vertical hull girder natural frequencies with respect to
published work (Bishop and Price, 1979; Senjanovic et al., 2009;
Seng et al., 2012; Zhou and Zhao, 2006; Hirdaris et al., 2003). Apart
from the hulls in Section2.1, several other hulls have been con-
sidered from available literature, and their mass and stiffness
distributions have been image–read through MATLAB. All fre-
quencies are in rad/sec.

The 1D equal-size beam element-based FEA, applied on a non-
uniform beam, consistently overpredicts the natural frequency by
a slight margin, as compared to those by the Rayleigh–Ritz method
(column N¼12). Since the empirical formulations are based on the
midship section properties, their frequency estimates are some-
times more and sometimes less than those by the R–R method.

4.1. Frequency convergence study

The convergence of the non-uniform beam natural frequencies,
with respect to the increasing number of admissible functions is
depicted. Due to the greater discontinuity in the mass distribution
in the ballasted case, more admissible functions are required to
approximate the energy of the beam, leading to the convergent
natural frequencies. It is interesting to note that for the generation
of an odd non-uniform frequency, the inclusion of an odd ad-
missible function changes the frequency more than the inclusion
of an even admissible function; and vice-versa. The fundamental
frequency usually converges using 4–5 admissible functions, till
the second decimal place. In ballasted hulls, it may take a few
more. The second frequency usually converges with 6–8 ad-
missible functions, while the third requires 9–12 admissible
functions.

In Table 2(e), there is a close correspondence with the first two
R–R frequencies and the published ones, since both the hulls have
been analyzed by the Euler–Bernoulli beam model. The R–R
method predicts the fundamental frequency of the destroyer with
0.3% accuracy, with only four (4) admissible functions. The second
frequency is within 3% accuracy, with eight(8) admissible
functions.

In Table 2(f–g), the literature uses a Timoshenko beam model,
while our work has used the Euler–Bernoulli beam model. Still, the
first two loaded hull R–R frequencies are comparable to the pub-
lished ones, with only 5% and 3% discrepancy respectively. The
ballasted hull shows more discrepancies due to the distortion of
the modeshapes, as compared to the Timoshenko beam.

In Table 2(h–i), the correspondence of the R–R frequencies is
milder with the literature, since those works have used the cou-
pled vertical and horizontal torsional vibration of the hull girder,
where the system of governing differential equations are statically
decoupled but dynamically coupled. Still, the fundamental fre-
quencies are closely corresponded to by the R–R results. In Table 2
(h), the R–R method predicts the fundamental frequency with 5%
accuracy, with eight(8) admissible functions.

4.2. Non-uniform modeshape study

Figs. 1–8 show the mass and stiffness distributions of the two
hulls studied here, the Destroyer hull from Bishop and Price
(1979), and the Bulker hull from Hirdaris et al. (2003), alternately
with the first three non-uniform beam modeshapes generated by
the Rayleigh–Ritz method. The modeshapes of Tanker hull from



Table 2
Comparative studies of the Rayleigh–Ritz method, FEA, and Empirical estimates of vertical hull girder natural frequencies (rad/s) from published work.

(a) SCIM Containership (Loaded)

Rayleigh–Ritz method Empirical FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12 Schilck Todd

4.75 4.75 4.75 4.74 4.74 – – – – 4.17 6.14 5.18
11.59 11.59 11.57 11.57 – – – – – 9.93 12.64 12.85
22.62 22.58 22.57 22.53 22.53 22.51 22.50 22.50 – 16.69 24.56 24.52

(b) SCIM Containership (Ballast)

Rayleigh–Ritz method Empirical FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12 Schilck Todd

9.85 9.84 9.84 – – – – – – 7.10 10.72 10.19
25.87 25.86 25.80 25.80 25.78 25.78 – – – 14.12 19.07 26.56
47.80 46.83 46.76 46.49 46.49 46.45 46.45 46.44 46.44 28.41 42.88 47.86

(c) DS Tanker (Loaded)

Rayleigh–Ritz method Empirical FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12 Schilck Todd

5.86 5.86 – – – – – – – 4.19 6.45 6.16
15.03 15.03 – – – – – – – 9.96 13.08 15.86
29.80 29.78 29.78 29.77 29.77 29.75 29.75 – – 16.77 25.82 30.90

(d) DS Tanker (Ballast)

Rayleigh–Ritz method Empirical FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12 Schilck Todd

14.74 14.74 14.74 14.73 14.73 – – – – 8.29 13.29 15.64
39.07 39.07 39.03 39.02 39.01 39.00 39.00 – – 15.82 22.68 41.31
71.79 71.25 71.25 71.05 71.04 70.99 70.97 70.97 70.95 33.16 53.17 75.28

(e) Destroyer, Bishop and Price (1979), Ch.4

Rayleigh–Ritz method Lit FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12

14.75 14.74 14.74 – – – – – – 14.78 16.18
33.03 32.81 32.72 32.70 32.68 32.68 – – – 33.78 36.82
62.53 62.09 61.54 61.36 61.34 61.31 61.30 61.30 – 57.25 62.94

(f) Tanker, Bishop and Price (1979), Ch.4 (Loaded)

Rayleigh–Ritz method Lit FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12

6.33 6.33 – – – – – – – 6.68 6.98
15.35 15.21 15.21 15.21 15.18 15.18 – – – 15.69 16.26
32.90 32.54 31.75 31.30 31.21 31.04 30.99 30.97 30.94 29.55 31.41

(g) Tanker, Bishop and Price (1979), Ch.4 (Ballast)

Rayleigh–Ritz method Lit FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12

3.40 3.40 – – – – – – – 4.00 3.96
8.31 8.31 8.31 8.30 8.30 8.30 8.30 8.30 8.29 10.01 10.31
16.67 16.64 16.63 16.63 16.62 16.61 16.61 16.60 16.60 16.63 18.19

(h) OBO MY Derbyshire (Hirdaris et al., 2003)

Rayleigh–Ritz method Empirical Lit FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12 Schilck Todd

4.63 4.63 4.63 4.63 4.62 4.62 – – – 3.63 5.75 4.42 4.95
11.06 11.05 11.04 11.03 11.03 11.03 11.02 11.02 – 9.15 12.08 9.25 12.46
22.22 22.21 22.11 22.11 22.11 22.07 22.06 22.04 22.04 14.52 22.99 14.24 23.56
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Fig. 1. (a,b). Mass ( )m x and Second moment of Area ( )I x distribution of SCIM(Containership), LOA¼262 m.
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Fig. 2. First three non-uniform beam modeshapes of SCIM (Containership) in the (a) Loaded condition, (b) Ballast condition, by the Rayleigh–Ritz method. Dotted lines show
the uniform beam modes.

Table 2 (continued)

(i) 7800TEU containership, Senjanovic et al. (2009) (loaded)

Rayleigh–Ritz method Empirical Lit FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12 Schilck Todd

3.98 3.97 3.97 – – – – – – 3.50 5.49 3.99 4.41
9.86 9.85 9.83 9.81 9.80 9.80 9.80 9.79 9.79 8.97 11.72 8.39 10.86
19.57 19.49 19.41 19.31 19.24 19.20 19.20 19.20 19.20 14.01 21.96 13.18 19.49

(j) 7800TEU containership, Senjanovic et al. (2009) (ballast)

Rayleigh–Ritz method Empirical Lit FEA

N¼4 N¼5 N¼6 N¼7 N¼8 N¼9 N¼10 N¼11 N¼12 Schilck Todd

5.77 5.77 5.77 5.77 5.77 5.76 5.76 – – 4.31 6.91 5.58 6.22
13.70 13.69 13.67 13.65 13.63 13.63 13.62 13.62 – 10.12 13.72 11.56 14.79
26.47 26.30 26.20 26.11 26.03 25.99 25.99 25.98 25.98 17.24 27.65 17.79 25.83
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Bishop and Price have not been compared, since it was studied by
the Timoshenko beam theory and our work is limited to the Euler–
Bernoulli beam theory. The comparison with the isometric views
of the coupled-FEA modeshapes from Senjanovic (2009) is also
difficult, and hence, withheld. The non-uniform modeshapes have
been achieved through the same number of modeshapes which
lead to the frequency convergence, in Section 4.1.
If the non-uniformity of the structure has varied mathemati-
cally (linearly, bilinearly, exponentially) along the length, as shown
in Serge (1995), Qiusheng et al. (1996), Laura et al. (1996), Zhou
and Cheung (2000), Ece et al. (2007), Timoshenko (1937), Thom-
son et al. (1998) and Auciello (2001), only a few uniform beam
modeshape (admissible functions) would be necessary to converge
to the non-uniform beam modeshape through the Rayleigh–Ritz
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Fig. 3. (a,b). Mass ( )m x and Second moment of Area ( )I x distribution of DS (Tanker), LOA¼250 m.
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Fig. 4. First three non-uniform beam modeshapes of DS (Tanker) in the (a) Loaded condition, (b) Ballast condition, by the Rayleigh–Ritz method. Dotted lines show the
uniform beam modes.
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Fig. 5. (a,b). Mass ( )m x and Second moment of Area ( )I x distribution of OBO MY Derbyshire (Hirdaris et al., 2003), LOA ¼294.2 m.
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method. The strongly arbitrary variation of the mass and stiffness
for a merchant vessel necessitates the inclusion of a few more
admissible functions to achieve the frequency and modeshape
convergence. Since the mass and stiffness distributions are arbi-
trary, they distort the non-uniform beam modeshapes from the
corresponding uniform ones. Here, ‘distortion’ would mean :
(i) shift in the positions of the nodes and antinodes, (ii)
magnification or reduction of the depths of the antinodes, and (iii)
more curvature and points of inflexion in the modeshape.

Studying Fig. 2(a,b) and Fig. 4(a,b), it is consistently seen that a
ballasted hull suffers more distortion of non-uniform modes, since
the engine and deck machinery act as beam ‘tip masses’, causing
the ends to deviate away from the admissible functions. A more
distorted modeshape has a higher frequency due to more
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Fig. 6. First three non-uniform beam modeshapes of OBO MY Derbyshire (Hirdaris
et al., 2003), by the Rayleigh–Ritz method. Dotted lines show the uniform beam
modes.
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Fig. 8. (a). Data from Bishop and Price (1979), Ch.4, Pages 72–74: First three nor-
malized modeshapes of Destroyer. (b). First three non-uniform beam modeshapes
of Destroyer by the Rayleigh–Ritz method, (Bishop and Price, 1979, Ch.4). Dotted
lines show the uniform beam modes.
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curvature and potential energy. The ballasted hull has its kinetic
energy mostly concentrated at the ends, leading to the lowering of
antinodes at the midship, and the increase in antinodes at the
ends. A fully loaded modeshape has the modeshape magnitude
Φ ( )<x 2j , while a ballasted modeshape has a magnitude Φ ( )<x 3.j

Since modeshapes are spatial shape functions without dimensions,
they can be normalized to 1.0 (Bishop and Price, 1979). A fully
loaded ship has much smoother modeshapes due to a more even
mass distribution, leading to an even distribution of kinetic en-
ergy. Its non-uniform modeshapes enjoy far less deviations from
the corresponding uniform modes; showing the diagonal dom-
inance of the weight vector matrix (Section 3.1.3). Also, presence of
large concentrated masses shifts the positions of the nodes/
antinodes.

In Fig. 6(b), the R–R modeshapes of the Bulker from Hirdaris
et al. (2003) match well with the FEA ones generated in that work
(Fig. 6(a)). The odd non-uniform modes are asymmetric about the
midships, with the aft end suffering a larger antinode than the fore
end. The third mode has a flatter anti-node amidships (compared
to the third uniform beam mode), corresponding well with the
published modeshape. As seen in Fig. 8(b), the R–R method pre-
dicts the odd modeshapes with greater accuracy than the even
ones. The first and third modeshapes show good correspondence
with the published modeshapes.
0 20 40 60 80 100 120
0

1x10

2x10

3x10

4x10

m
(x
)

0

1

2

3

4

5

Fig. 7. (a,b). Mass ( )m x and Second moment of Area ( )I x distribu
A ballasted hull suffers from larger wave-induced dynamic
stress levels. However, a ballasted ship has a higher frequency,
further away from the tail-end of the sea-spectrum, and hence
much less likely to suffer springing. A loaded ship, with a loaded
frequency, is more prone to resonant wave excitations.
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tion of Destroyer, LOA¼107 m (Bishop and Price, 1979, Ch.4).
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5. Discussion and Conclusions
� RR with respect to FEA: The first attempt to bypass the compu-
tationally cumbersome and expensive FEA, and use a semi-
analytical method, i.e. the energy-based Rayleigh-Ritz method,
for hull girder vibration analysis is highlighted. The popularity
of FEA in hull girder vibration analysis stems from the fact that
it can handle arbitrary geometries. However, it is demonstrated
here that Rayleigh-Ritz method can also efficiently handle very
arbitrary mass and stiffness distributions, converging to the
natural frequencies and modeshapes.

� First RR-method application in ship hull vibration: This is the first
attempt to study the vibration of non-uniform beams (in gen-
eral, not ship hull in particular) with very arbitrary longitudinal
distribution of mass and flexural rigidity, through energy-based
methods. All relevant literature (Serge, 1995; Qiusheng et al.,
1996; Laura et al., 1996; Zhou and Cheung, 2000; Ece et al.,
2007; Timoshenko, 1937; Thomson et al., 1998; Auciello, 2001;
Bishop and Price, 1979) is limited to mathematical variations of
sectional properties, and sometimes closed-form non-uniform
modeshapes. Attempts to study ‘arbitrary’ mass distributions
have used “lumped masses” on the beam. Attempts to study
‘arbitrary’ stiffness distributions have used “stepped beam”

approximations. Our method uses the most generic case of
mass and stiffness distributions, without any mathematical
conveniences.

� Closed-form admissible functions This method shows reasonable
accuracy in prediction of the first few converged dry hull girder
vertical vibration frequencies. The use of closed-form ad-
missible functions (uniform beam modeshapes) estimates the
energy configuration of the beam faster than FEA. For a 350 m
long tanker, 100 elements of the FEA model would mean a 3.5 m
long linear straight element, compromising on the energy
configuration of the total hull. The closed-form admissible
function, as a combination of sinusoidal and exponential func-
tions, gives a closer approximation of the hull shape, slope, and
curvature at any x-location.

� Computational efficiency: The hull girder frequencies predicted by
the R–R method act as good initial estimates in the ship design
process. This method requires only the first few uniform beam
modes (as admissible functions) to generate a converged fre-
quency; compared to FEA which requires much larger number
of elements for a smooth hull modeshape, and thus frequency. If
5(five) admissible functions are required to converge the fun-
damental hull girder frequency, the R–R method operates on a
5�5 matrix built from the energy minimization principle. For
the same frequency, a 100-element FEA model works on a
200�200 matrix of the Eigen value problem. This is shown in
the convergence study where the solution obtained by RRM
converges for much lower number of trial functions (e.g. 4–8) as
compared to the number of elements (e.g. 100) in FEM.

� Future modeshape applications: The hull girder modeshapes pre-
dicted by the R–R method can be used as inputs in the hydro-
elastic analysis of the ship to wave excitation responses, which
is done by the efficient normal mode summation method. All
flexural forced responses of the hull, in waves at various fre-
quencies and various ship speeds and directions, require the
vibration modeshapes of the hull girder for the hydroelastic
analysis. Hull modeshapes are also required to study the ra-
diation problem, i.e. wet free vibration of the hull. The mode-
wise added mass distribution of the hull becomes a direct
function of each hull modeshape, formulated through the body-
boundary condition of ‘no penetration’.
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