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ABSTRACT 
Dynamic analysis of thin rectangular elastically supported stiffened plates with axial loads is presented. A 

floating airport is modeled as a horizontal Kirchhoff‟s plate, which is elastically supported at the ends; and is subjected to the 

impact of aircrafts landing and deceleration over its length. This sets the free-free-free-free plate into high-frequency 

vibration, causing flexural stress waves to travel over the plate. First, the beam natural frequencies and modeshapes in either 

direction are generated with these complexities. The Eigen value analysis of the governing differential equation is done, 

using the weighted summation of the product of the beam modes. The accuracy of the frequencies is compared with those 

from FEA studies. The radiation pressure on the bottom side of the plate is included to reduce the frequencies by the added-

mass effect. The plate is then subjected to decelerating shock loads. The vibratory response is analyzed by the 

computationally efficient normal mode analysis. The amplification factor vs. the taxiing time of the moving load is generated.  

Keywords Plate vibration, Shock loads, Normal mode analysis, Added mass. 

1. Introduction

The increase in the world population has been

congesting the inhabitable areas, leading to land 

being at a premium. Smaller and island countries 

(e.g. Japan) have been foraying into floating cities 

and airports, in an attempt to “reclaim” artificial 

“land” area on the sea. Design of such VLFS (Very 

Large Floating Structure) has been gaining relevance 

over the past few decades. Floating airports are 

subject to impact loads with aircrafts land over them, 

followed by a transient load of the taxiing of the 

craft. This causes dynamic deflections and stresses 

in the VLFS, which must be analyzed to ensure a 

sound structural design of the highly expensive 

fabrication. If the sea is calm (sea state < 3), the 

fluid added to the radiation pressure which reduced 

the natural frequency of the plate, thereby making it 

tender. Higher sea states cause waves to act as 

irregular force on the structure, leading to global 

bending moments and shear stresses, in addition to 

the transient impact load of the aircraft.  

Young (1950) analyzed the free vibration of 

plates by the Ritz method, with various boundary 

conditions. Saha et al (2004) studied the higher-

order large-amplitude vibrations of plates for 

different boundary conditions. Wang et al (2005) 

perfected the modeshape functions of plates with 

different boundary conditions. Yeh et al (2006) 

delved into the numerical aspects of free vibration 

analysis of plates. Yu et al (2008) studied the 

numerical convergence of the frequencies of square 

plates with various boundary conditions. Chen et al 

(2009) generated the modeshapes of rectangular 

plates experimentally, comparing them with FEA. 

Meyerhoff (1970) calculated the added masses 

of rectangular plates, by calculating the dipole 

strength densities corresponding to each plate 

modeshape. Joseph et al (1990) studied the wet 

vibration of square plates of different material and 

fluid densities. Kwak (1996) calculated the wet 

vibration frequencies of thin rectangular CCCC and 

SSSS plates by modal analysis, considering two 

different boundary value problems. Cheung and 

Zhou (2000) extended this study by considering 

different volumes of fluid in contact with the plate. 

The above work, however, is limited to free 

vibration only. 

Robinson and Palmer (1990) theoretically 

formulated the frequency parameter of a FFFF plate 

in contact with water on one side, stopping short of 

calculating the frequencies and modeshapes. 

Kagemoto et al (1998) calculated the wave-response 

of a VLFS using substructure models using FEA, 

and experimentally. This work did not take any 

shock loads into account.  It studied only one case of 

plate size and configuration, but could not generalize 

the frequencies, modeshapes, added masses, and 

dynamic loading factors. Endo (2000) used FEA to 

study the VLFS response due to aircraft 

landing/takeoff. Seto et al (2005) studied the two-
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way coupled Mega-Float vibratory response due to 

wave action. Hashemi et al (2010) studied the free 

vibration of elastically supported plates with water 

on one side, using the Ritz method.  

None of the above literature studied the impact-

induced vibration of elastically supported plates, in 

contact with water on one side, due to aircraft 

landing, using the modal analysis, bypassing the 

computationally expensive and commercial codes.  

In this paper, a floating airport is modeled as a 

rectangular plate with water on one side, supported 

on the edges by elastic supports. Moorings cause 

axial tension in the plate, which makes the structure 

stiffer (increased natural frequencies. The sea is 

assumed to be calm, i.e. the plate vibration occurs in 

calm water. A MATLAB code has been written for 

the dry and wet dynamic analysis. First, the free 

(dry) vibration analysis of the plate is done using the 

Galerkin‟s method. The natural frequencies and 

modeshapes of the plate are generated for different 

aspect ratios. The structure is assumed to be very 

lightly damped. The radiation pressure has been 

included with the source distribution technique, 

leading to added masses associated with each 

modeshape and the corresponding reduced (wet) 

natural frequencies. The radiation damping is 

negligible, given the high frequencies of the 

vibrations.  

This is followed by a forced vibration analysis 

of the plate, due to the impact of the landing aircraft, 

which decelerates to zero velocity. The transient 

force sets the plate in vibrations, exciting all its 

natural frequencies to various extents. The dynamic 

analysis with the normal mode summation method; 

and the corresponding static analysis is done by 

Galerkin‟s method.  The global maximum dynamic 

deflection is normalized by the global maximum 

static deflection to generate the Dynamic Loading 

Factor (DLF) for various taxiing time and 

decelerations. The modal participation of the plate 

modeshapes in the total deflection is also studied to 

establish the modal truncation guidelines. Impact 

and transient loads cause the participation of the 

higher order modes. Optimized taxiing duration and 

decelerations has been recommended, which leads to 

the minimum dynamic deflections and stresses. 

 

2. Problem formulation 

The floating airport is modeled as a solid 

Kirchhoff‟s plate (Fig.1), of length L, width B, 

thickness h, flexural rigidity D, floating in contact 

with water of density ρwater, and supported over its 

edges by elastic supports of spring constant K. The 

water depth is considered to be „shallow‟ since the 

dimensions of the VLFS are in the order of 

kilometers, while the water depth near the shore 

(continental shelf) is in the order of metres. The 

plate is tethered by mooring lines, which cause an 

axial tension of Nx along the X-direction, and Ny the 

Y-direction. The structure is considered to be lightly 

damped, with the damping ratio < 5%. Damping 

reduces the first dynamic deflection overshoot of the 

structure (over the static deflection), thereby 

reducing the dynamic loading factor. Proportional 

damping has been used here. The radiation damping 

is assumed to be zero. The high-frequency limit of 

the vibration causes the air-water interface to behave 

like a rigid-lid, having no outgoing waves. The 

radiation pressure is almost nearly in phase with the 

acceleration of the body („added mass‟ effect).  

                                                                                                                                      

  

 

                                                               

  

                                                     

 

 
Fig. 1  Elastically supported plate. 

 

The aircraft-landing dynamic force is modeled 

as a Heaviside step function (w.r.t time), which 

initially (at position A) has a velocity „u‟ m/sec 

along the length of the plate, and decelerated to zero 

velocity (at position B), over a taxiing distance „S‟ 

m, and for a taxiing duration of ttax. The deceleration 

is „a‟ m/s
2
. The impact F and the transient force 

F(x,t) set the plate into small-amplitude high-

frequency vibrations. The initial velocity of the 

aircraft at landing (position A), i.e. „u‟ m/sec, is 

considered to be a constant. The final velocity, at 

position B, is zero. The deceleration 
S

u
a

2

2

and the 

taxiing distance .
2

1 2
taxtax atutS  Deceleration „a‟ 

va. ttax vary as a rectangular hyperbola. A dual 

parametric variation may been used in this study : 

(a) the taxiing distance „S‟ is kept constant, varying 

the deceleration „a‟, and thus the taxing time ttax, and 

(b) the deceleration „a‟ is kept constant, varying the 

taxiing distance „S‟ and thus the taxiing time ttax.  
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3. Analysis methodology 

The cross-section view of the floating airport, at 

y = B/2, is shown in Fig.2.  The aircraft lands at 

position A, with an initial horizontal velocity „u‟ 

m/sec, and decelerates to rest at position B. The 

vertical velocity of the craft is assumed to be nearly 

zero, and there is no vertical impact on the plate due 

to the landing.  The moving load sets the airport into 

flexural vibrations, exciting all the natural 

frequencies and plate modeshapes to various extents, 

causing tensile and shear stress wave patterns to 

travels across the plate.  

                  A            B 
        m, L, EI 

 

               

    k                           S                            k 

 
Fig. 2 Elastically supported beam. 

 

3.1 Free Vibration : elastically supported 

beam 

The GDE of free vibration of an elastically 

supported beam, under axial tension, is given as : 

0
),(),(),(

2

2

4

4

2

2

x

txz
N

x

txz
EI

t

txz
m x , subject to:

),()('''),0()0(''',0)(")0(" LKzLEIzKzEIzLzz

i.e. the end bending moment is zero, while the shear 

force at the ends balances the spring force due to the 

end deflection. As K→0, the plate behaves like a 

Free-Free (FF) beam, while as K→∞, the beam 

behaves as a simply supported (SS) beam. Each 

support generates a shear force at the ends, except 

for the Free-Free beam. The end shear force for a 

simply-supported beam is
3

L

j
EI  for the j

th
 

modeshape. For K< ∞, the end shear force is a % of
3

L

j
EI , and thus, it is denoted as a % support. For 

K = 0, the end shear force vanishes, and we get a 0% 

supported beam or a free-free beam. The dynamic 

deflection is expressed as ).()(),( tFxGtxz Using 

the method of separation of variables, 

)()(
2

xG
EI

m
xG IV or )()( 4 xGxGIV . The general 

solution of the 4
th
 order ODE is : 

.sinhcoshsincos)( 4321 xGxGxGxGxG  
The constants G1, G2, G3, G4 are calculated from 

the boundary conditions:      ;031 GG  
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Writing the above system of equations in the 

matrix form, and equating the determinant to zero 

(for a non-trivial solution) generates the frequency 

equation, which is a transcendental equation, 

satisfied by an infinite number of unique values β, 

each corresponding to a unique natural frequency. 

The Eigen vectors of the above system generate the 

constants G1, G2, G3, G4; and thus the modeshapes. 

 

3.2 Free Dry Vibration : elastically supported 

plate 

The GDE of free vibration of an elastically 

supported Kirchhoff‟s plate is expressed as follows : 

0
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The bending moment Mx and My are zero at 

the ends, and the shear force at the edges equals the 

spring force produced due to the deflection of the 

modeshape. As K→0, the plate behaves like a Free-

Free-Free-Free (FFFF) plate, while as K→∞, the 

plate behaves as a simply supported (SSSS) plate. 

Axial tension increases the natural frequencies of the 

structure, without influencing the modeshapes. The 

total out-of-plane dynamic deflection z(x,y,t) is a 

function of space and time. Separating the variables 

into space and time, we assume Φk(x,y) as the k
th
 

spatial shape function, and qk(t) as the temporal 

function of the k
th
 vibratory mode. The dynamic 

deflection of the plate is approximately  

)(),(),,(
1

tqyxtyxz k
k

k with the 3-D plate 

modeshape is defined as a series sum as follows : 

jl

ex

j

ey

l

k
jllj

ex

j

ey

l

k
jlk GAyxAyx

mod

1

mod

1

mod

1

mod

1

)()(),(

i.e. )()(),( yxyxG ljjl , modex is the number of 

modes considered in the x-direction, modey is the 
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number of modes considered in the y-direction, and 

)(xj  and )(yl , are the respective 2-D beam 

modeshapes (orthogonal set of functions). k
jlA  is the 

amplitude of each ),( yxG jl for the k
th
 natural 

frequency of vibration. The natural frequency is 

nondimensionalized by the factor 
22 BmL

D
.  

3.3 Free Wet Vibration : elastically 

supported plate 

The 3D boundary value problem of wet 

vibration of plates, with water on one side, is framed 

as shown in Fig.3. The flexible plate has a semi-

infinite fluid domain on one side, the other side 

being dry. Sides DA and BC are a part of the “rigid 

lid”, formed by the high frequency limit of the 

combined free surface boundary condition. AB 

represents the flexible plate. Assuming inviscid, 

incompressible, irrotational flow, the velocity 

potential satisfies the Laplace equation in the fluid 

domain, subject to the following boundary 

conditions: (a) the normal velocity on DA and BC 

are zero, (b) the normal velocity on AB equals the 

structural velocity, (c) fluid velocity tends to zero at 

the far-field. Here, we define ψ*(x,y,z) as the 

velocity potential per unit structural velocity. The 

governing differential equation for the unforced, 

wet, damped vibration of a Kirchhoff‟s plate is  

.
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Fig.3  Boundary Value Problem 

Pre-multiplying by the r
th
 plate modeshape 

and integrating over the surface area of the 

plate gives the generalized mass, generalized added 

mass, and generalized stiffness. 
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k

n

with the 

gen. added mass is

BL

waterkn dxdyyxyxA .)0,,(),(  

The Non-dimensional Added Virtual Mass 

Increment (NAVMI) factor depends only on the 

plate modeshape, and is independent of the present 

of tension in the plate. The outer surface of the plate 

(of is in contact with the fluid, and hence the fluid 

inertia is independent of the presence the marine 

craft) of frames/stiffeners on the inner surface of the 

plate. It is given as 

BL
kk

BL
kk

dxdyyxyx

dxdyyxyx

NAVMI
),(),(

),(),( *

 .  

3.4 Forced Vibration 

The governing differential equation for forced 

vibration of an elastically supported, axially loaded 

plate under a moving point load is given as : 

).
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This is solved by the computationally 

efficient normal mode summation method. 

Substitution of the modal superposition above, and 

integration with weighting functions over the space, 

gives the normal mode expansion of the governing 

differential equations as a function of time only, as : 

)()()()(
111

tgftqNtqKtqM kn
n

kmn
n

kmn
n

km , 

or  )}({)}(]{[)}({][)(][ tgftqNtqDtqM . 
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Generalized mass ≡ 
L B

nkkn dxdyyxyxM

0 0

),(),( ,  

Gen. stiffness ≡ 
L B

nkkn dxdyyxyxK

0 0

4 ),(),( , 

Gen. axial load ≡
L B

nkkn dxdyyxyxN

0 0

" ),(),(  

Generalized forcing ≡
L B

kk dxdytyxFyxgf

0 0

),,(),( , 

This is solved numerically by the stable Euler's 

implicit-explicit scheme, to calculate the principal 

coordinates qk(t) as a function of time. The principal 

coordinates are then multiplied by the corresponding 

plate modeshapes Φk(x,y) to generate the dynamic 

deflection z(x,y,t) as a function of space and time. 

 

3.5    Static Deflection and DLF 

The static deflection of the plate, at each time 

step, under the same loading configuration, is 

calculated as a function of space and time. The ratio 

of the dynamic deflection to the corresponding static 

deflection, under the equivalent loading conditions, 

is defined as the Dynamic Load Factor (DLF), i.e. 

),,(

),,(

tyxZMax

tyxZ
MaxDLF

st

. The static deflection 

is calculated by solving the following equation using 

Galerkin's method which includes the contribution 

of all the 3-D  plate modeshapes.  

The classic static plate bending equation is : 

),,(),,(4 tyxFtyxZD  which gives 

),(),,(
mod

1

mod

1

yxGHtyxZ
ex

j

ey

l
jljlst . Hjl is the 

amplitude of the Galerkin's pre-multiplier Gjl(x,y); 

and thus, it is the static counterpart of 
k

jlA . Thus the 

DLF forms a very important design parameter for 

the structural designer, who does the static analysis 

of the corresponding area load only. 

 

4. Results. 

First, the free vibration results have been 

established to obtain the plate modeshapes, which 

are input in the mode-summation method of forced 

vibration analysis.  The beam modeshapes are 

established for various end supports, which are used 

as admissible functions to generate the plate 

modeshapes.  

 

4.1 Free Vibration : elastically supported 

beam 

Table 1 shows the first five frequency 

parameters of elastically supported beams, for a 

range of factors .
3

EI

kL
 For a support factor < 10

-3
, the 

β values approach the frequency parameters of a FF 

beam, i.e. 4.73, 7.85, 10.99, etc. For a support factor 

> 10
6
, the β values approach the frequency 

parameters of a SS beam, i.e. nπ. As seen in Fig.4, 

the sharpest change in the fundamental frequency 

parameter occurs for 10 < 
EI

kL3

<100.  This change 

indicates the transition zone between the free-free 

beam behavior and the simply-supported beam 

behavior. However, for higher order modes, this 

sharp change occurs at the larger spring support 

factor (Fig.5). For the 10
th
 modeshape, the change 

occurs for 1000 < 
EI

kL3

<100000.  As the wave 

number increases, the end slopes increase, leading to 

lower shear forces at the ends, and hence, larger 

range of free-free beam behavior.  

The general expression of the modeshape for an 

elastically supported beam is given as  

.sinhcoshsincos)( 4321 xGxGxGxGxG  

Putting in the boundary conditions produces a 4-

equation system of the constant G1, G2, G3, G4. 

The correct Eigen vector (among four) must be 

chosen to generate the correct modeshapes, which 

are listed below in Table 2. The fundamental 

modeshape of elastically supported beams, for 

different support factors, are shown in Fig.6 below.  

 
Fig.4   Fundamental  βL vs. log10(factor) 
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Fig.5  First 10 frequency parameters βL vs. log10(factor) 

 

Table 1   Frequency parameters of the first 5 modes of 

elastically supported Euler-Bernoulli beams 

Factor βL_1 βL_2 βL_3 βL_4 βL_5 

0.0000001 4.7300 7.8532 10.9956 14.1372 17.2788 

0.000001 4.7300 7.8532 10.9956 14.1372 17.2788 

0.00001 4.7300 7.8532 10.9956 14.1372 17.2788 

0.0001 4.7300 7.8532 10.9956 14.1372 17.2788 

0.001 4.7300 7.8532 10.9956 14.1372 17.2788 

0.01 4.7282 7.8528 10.9955 14.1371 17.2787 

0.1 4.7282 7.8528 10.9955 14.1371 17.2787 

1 4.7111 7.8491 10.9941 14.1365 17.2784 

10 4.5368 7.8121 10.9806 14.1301 17.2749 

100 3.4929 7.4712 10.8507 14.0678 17.2405 

1000 3.1731 6.5259 10.0776 13.5813 16.9408 

10000 3.1447 6.3080 9.5071 12.7538 16.0471 

100000 3.1419 6.2857 9.4331 12.5861 15.7463 

1000000 3.1416 6.2834 9.4256 12.5684 15.7118 

10000000 3.1416 6.2832 9.4249 12.5666 15.7084 

 
Table 2   Eigen vectors of the frequency Equation matrix. 

Support 1000000 G1 G2 G3 G4 

 
Mode 1 0 1 0 0 

 
Mode 2 0 1 0 0 

 
Mode 3 0 1 0 0 

Support 100 G1 G2 G3 G4 

 
Mode 1 0.1699 -0.9574 0.1699 -0.1599 

 
Mode 2 -0.4387 0.6497 -0.4387 0.4392 

 
Mode 3 -0.4802 0.5553 -0.4802 0.4801 

Support 10 G1 G2 G3 G4 

 
Mode 1 -0.4777 0.5699 -0.4777 0.4676 

 
Mode 2 -0.4945 0.5157 -0.4945 0.4949 

 
Mode 3 -0.4981 0.5056 -0.4981 0.4981 

Support 0.0001 G1 G2 G3 G4 

 
Mode 1 -0.5044 0.4956 -0.5044 0.4956 

 
Mode 2 -0.4998 0.5002 -0.4998 0.5002 

 
Mode 3 0.5000 -0.5000 0.5000 -0.5000 

 

 
Fig.6   Fundamental modeshapes of beam vibration with 

elastically supported ends, with various %age end supports. 

 

4.2 Inclusion of the rigid-body modes. 

As the edge support spring constant reduces, the 

plate tends to a free (FFFF) plate, with zero shear 

force and zero bending moments at the edges. The 

rigid body modes of heave, pitch, and roll, become 

more and more prominent with decreasing „k‟. For 

the beam model, the heave and pitch modeshapes are 

respectively given as .
2

1)(;1)(
L

x
xx The 

rigid-body modeshapes need to be included in the 

Eigen Value analysis. The least three frequencies 

obtained from it denote the heave, pitch, and roll 

frequencies.  

Consider the extreme values of the elastic 

support spring constant „k‟: when k→0, the rigid 

body modes are present; and when k→∞, they are 

absent. For all intermediate values of „k‟, the 

prominence of the rigid body modes is inversely 

proportional to the spring constant. In this analysis, 

the rigid body modes are included in the free 

vibration analysis of beams and plates. The heave 

and pitch modeshapes are respectively given as 

.exp*
2

1)(;exp*1)(
33

EI

kL

L

x
x

EI

kL
x Now 

......!3!21
......!3!21

1
]exp[ 32

32
kkk

kkk
k  

which is bounded. The upper limit is 1 and lower 

limit is zero. Thus, 
EI

kL3

exp serves as a suitable 

coefficient for the rigid body modes. The effective 

presence of „k‟ in the denominator is justified since 

the heave deflection =
k

Force
, and the pitch angular 

deflection =
kL

Moment
. 
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4.3 Free Dry Vibration : elastically supported 

plate 

With the availability of the beam modeshapes, 

the plate modeshape is assumed to be a weighted 

summation of the product of the beam modeshapes 

in the two directions. Galerkin‟s method is used to 

solve the Eigen value problem, generating the Eigen 

value (plate natural frequencies) and the Eigen 

vectors (weights of the Galerkin‟s pre-multiplier 

)()( yx lj ). The middle-term of the biharmonic 

operator ),(4 yx , in the stiffness term causes the 

coupling between the beam modeshapes in the two 

directions.  

It is only for the SSSS plate, that this biharmonic 

operator middle-term does not couple the beam 

modeshapes on either side, since the beam 

modeshapes and their curvatures are orthogonal top 

each other, and drop out in the normal mode 

summation procedure.  

Table shows the first 3x3 = 9 natural frequencies 

of elastically supported square plates, for four 

different end support factors. The unique frequencies 

are in bold, while the repeated frequencies are in 

italics. For support factor > 10
6
, the plate 

frequencies correspond to those of a SSSS plate, 

which has unique and repeated frequencies. For a 

support factor < 10
-3

, the plate frequencies 

correspond to those of a FFFF plate, which has 

unique, repeated, and non-repeated pairs of 

frequencies.  

Tables 4, 5, 6 and 7 show the first 7x7 = 49 

modeshapes of a square plate, with an elastic support 

factor of 0.0001, 10, 100, and 1000000 respectively. 

The diagonal modeshapes correspond to the unique 

frequencies for mode index = 1, 4, 9, 16, 25, 36, 49.  

The first row and the first column stand for the 

heave interaction with all other modes. The second 

row and the second column stand for the pitch 

interaction with all other modes.  Entry at position 

(1,1), (1,2), and (2,1) are the pure rigid body modes.  

The modeshapes adjacent to the main diagonal 

are mirror images of each other, corresponding to 

the repeated frequencies modes (Identical twins). 

However, the alternate side-diagonal modes are very 

different from each other, though they have very 

close frequencies (Fraternal twins). Reducing the 

elastic support increases the prominence of the non-

repeated frequency pairs. 

 

Table 3    First 3x3=9 non-D dry natural frequencies of a 

square plate with four different elastic support factors. 

k 1E+06 100 10 1E-04 

1 19.739 26.341 33.854 35.298 

2 49.348 67.678 72.175 72.535 

3 49.348 67.678 72.175 72.535 

4 78.957 103.00 104.90 105.22 

5 98.696 128.86 130.07 129.66 

6 98.696 128.87 133.53 133.74 

7 128.30 160.11 160.57 160.67 

8 128.30 160.11 160.57 160.67 

9 177.65 211.78 211.35 211.32 

 
Table 4    First 7x7=49 modeshapes of a square plate with 

elastic support factor = 1/10000. 

 
Table 5   First 7x7=49 modeshapes of a square plate with 

elastic support factor = 10. 
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Table 6     First 7x7=49 modeshapes of a square plate with 

elastic support factor = 100. 

 
Table 7     First 7x7=49 modeshapes of a square plate with 

elastic support factor = 1000000. 

 
4.4 Free Wet Vibration : elastically 

supported plate 

Inclusion of the fluid inertia reduces the natural 

frequencies (Table 8), making it more susceptible to 

transient impact loads. It is seen that the diagonal 

term Akk is (much) larger than the non-diagonal 

terms Akn. Since the mass matrix is diagonal and the 

added mass matrix shown is almost diagonal, the k
th
 

wet natural frequency is given as  

;

1

1
,,

kk

kk
drykwetk

M
A

 

dxdymM k

L B

kkk
0 0

,  dxdyA
L B

waterkkk
*

0 0

,  

which gives the ratio of the fluid kinetic energy to 

the solid kinetic energy (Table 9). The k
th
 added 

mass depends on the volume enclosed under the k
th
 

plate modeshape.  

 
Table 8   First 3x3 = 9 non-D wet natural frequencies of a 

square plates with four different elastic support factors. 

k 1E+06 100 10 1E-04 

1 7.8282 12.039 24.480 26.017 

2 26.829 45.074 54.289 55.030 

3 26.829 45.074 54.289 55.030 

4 47.795 76.596 81.142 81.671 

5 59.688 93.722 102.50 102.85 

6 62.070 93.962 102.63 103.16 

7 84.358 124.61 127.28 127.56 

8 84.358 124.61 127.28 127.56 

9 122.98 169.88 170.52 170.58 

 

Table 9   NAVMI factors of the first 3x3 = 9 modeshapes 

of square plates with four different elastic support factors. 

k 1E+06 100 10 1E-04 

1 0.4104 0.2902 0.0696 0.0642 

2 0.1825 0.0961 0.0576 0.0551 

3 0.1825 0.0961 0.0576 0.0551 

4 0.1324 0.0619 0.0514 0.0505 

5 0.1328 0.0683 0.0477 0.0462 

6 0.1170 0.0675 0.0481 0.0464 

7 0.1006 0.0498 0.0455 0.0452 

8 0.1006 0.0498 0.0455 0.0452 

9 0.0832 0.0424 0.0425 0.0427 

 

5. Forced Vibration  

With the availability of the free vibration 

(natural) frequencies and modeshapes, the analysis 

proceeds to the forced vibration of the elastically 

supported floating plate, subject to the moving point 

load. The normal mode summation method fails to 

decouple flexural degrees of freedom (except of 

SSSS plate), causing the necessity of matrix 

inversion in the time integration of the coupled 

system of modal governing differential equations.  

Fig.7 shows the transient aircraft load, as a 

function of time, modeled as a point load moving 

across the plate in the X-direction, with the Y-

coordinate constant. The displacement has a 

parabolic relation with the taxiing time, as can be 

seen from the top view of the above diagram, with 

the locus of the aircraft following the black dotted 

line. The initial velocity of the craft is assumed to be 

60 m/sec, the taxiing distance is 90% of the length 
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Fig.7 Moving point load F(x,B/2,t) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 DLF vs. Non-D taxiing time for square plates 

with four different support factors. 

 

Fig. 8 shows the Dynamic Loading factor (DLF) 

for a square plate, elastically supported with support 

factors of 1000000 (SSSS plate), 100, 10, and 

1/10000 (FFFF plate). At larger taxiing time (Non-D 

taxiing time > 5), the maximum dynamic deflection 

is only 5%-10% greater than the maximum static 

deflection. Since small flexural amplitudes are 

assumed in the Kirchhoff‟s plate vibration, the 

stresses are linearly proportional to the deflection. 

Thus, the dynamic stresses developed due to the 

decelerating aircraft load, is 5%-10% greater than 

that predicted through the static analysis. However, 

at shorter taxiing time, the dynamic stress 

overshoots to 30%-60% above the static stress. At 

very small taxiing time, to load moves across so fast 

that the structure does not get the time to respond, 

while the static analysis over-predicts the deflection 

due to a moving impulse function (Dirac Delta 

function across space).  

Since the change in the behavior from free-free 

to simply-supported is seen between support factors 

of 10 and 100, the nature of the DLF also changes 

between these two magnitudes of the support. The 

DLF of the SSSS plate, subject to impact loads, may 

be verified from Datta (2010). As seen in Fig.8, the 

DLF for support factor = 1000000 (SSSS) and 100 

have similar characteristics. The peak DLF 

decreases with decreasing elastic edge supports of 

the plate.  

Between support factor of 100 and 10, the plate 

behavior switches from a nearly SSSS plate to a 

nearly FFFF plate. In this zone, the DLF 

characteristics show more frequent oscillations over 

the same taxing time range, as seen for DLF of 

plates with support factor 10 and 0.0001. This is due 

to the larger prominence of the rigid body modes in 

the normal mode summation of the force vibration 

GDE. Rigid body motions (heave, pitch, roll) offset 

the flexural deflections under the same moving load, 

reducing the dynamic stresses. However, too little 

elastic support increases the rigid body motions, 

which adversely affect the performance of the 

floating airport, and leads to radiation waves which 

erode the nearby shore and disturb the naval traffic 

in its vicinity. An optimized choice of the elastic 

support is necessary to avoid this. When the added 

mass is included in the forced vibration GDE, and 

the taxiing time is non-dimensionlized by the first 

wet flexural period of the plate, the wet DLF 

characteristics replicate the dry DLF (Datta 2010). 

 

6. Discussion  

A modal analysis of elastically supported square 

floating plates is presented. The dry vibration 

analysis has been done by the Galerkin‟s method, 

including the rigid body modeshapes. Wet vibration 

analysis has been done using the flexural 

modeshapes, to establish the wet natural frequencies.  

The various degenerate modeshapes with unique 

frequencies, identical twins, and fraternal twins have 

been established for different elastic supports. Wet 

vibration analysis, with water on one side of the 

plate, is used to generate the modal added masses.  

This is followed by the forced vibration analysis 

of a square plate, with water on one side. Dynamic 

loading factors of the flexural deflection are 

calculated for a range of taxiing time. Optimum 

support factor ranges are recommended, which 

causes lower dynamic stresses, without exciting too 

much of the rigid body degrees-of-freedom.  
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Nomenclature 

L Length of the plate 

B Width of the plate 

h Thickness of the plate 

ρ Density of the beam material 

ρwater Density of water 

E Elastic modulus of the material 

I  Second moment of area of the cross-section 

of the beam about the horizontal neutral axis 

x space variable along x-direction 

y space variable along y-direction 

t time variable 

)(xj  j
th
 beam modeshape in the x-direction 

)(yl  l
th
 beam modeshape in the y-direction 

),( yxk  k
th
 Plate modeshape 

qj(t) Principal coordinate 

Ψ(x,y,z,t) Velocity potential of the fluid 

k  k
th
 velocity potential of the fluid 

*
k  k

th
 velocity potential of the fluid per unit 

velocity of the k
th
 principal coordinate. 

Akn k
th
 generalized added mass under the n

th
 

plate modeshapes. 

F(x,y,t) Transient load  

ω n1 Fundamental natural frequency of the plate 

Tn1 Fundamental natural period of the plate 

z(x,y,t) Dynamic flexural deflection of the plate 

zst(x,y,t) Static flexural deflection of the plate 
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